

Reno Office

815 Maestro Dr. Reno, NV 89511 Ph: 775.829.2245 Fax: 775.829.2213

Las Vegas Office

6280 S. Valley View Blvd. Suite 604

Las Vegas, NV 89118 Ph: 702.260.4961 Fax: 702.260.4968

www.mcgin.com

| Soil and Groundwater Remediation

| Regulatory Compliance

| Environmental Audits

| Hydrogeology

| Hazmat Response

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT

Lackawanna Mill Site Portion of APN: 010-420-06

Latitude: 39°16'59"

Longitude: 114°52'04"

Ely, Nevada

NDEP Contract #10-008

Task M24-12

Prepared for:

State of Nevada Department of Conservation & Natural Resources Division of Environmental Protection 901 South Stewart Street, Suite 4001 Carson City, Nevada 89701

On behalf of: City of Ely

June 30, 2012

TABLE OF CONTENTS

1.	INTR	ODUCTION	1
2.	OBJE	CTIVES AND SCOPE OF SERVICES	1
3.	BACK	(GROUND	1
4.	ENVI	RONMENTAL INVESTIGATION	2
5.	ANAL	YTICAL TESTING	2
6.	ANAL	YTICAL RESULTS	2
	6.1 6.2	Summary of ResultsPCBs	2
	6.3	Metals	3
	6.4 6.5	VOCs	
	6.6	Soil pH	
	6.7	Dioxins/Furans	
7.	DATA	QUALITY	4
		Soil SamplingLaboratory Analytical Data for Soils	
8.	SUMI	MARY OF FIELD ACTIVITIES	4
9.	FIND	INGS	4
10.	CON	CLUSIONS AND RECOMMENDATIONS	5
11.	LIMIT	ATIONS	7
12.	CLOS	SING	8
13.	REFE	RENCES	9

TABLES

Table 1	Summary of Soil PCB Data
Table 2	Summary of Soil Metals Data
Table 3	Summary of Soil SVOC Data
Table 4	Summary of Soil VOC Data
Table 5	Summary of Soil pH Data
-	0 (0.115) /5

Table 6 Summary of Soil Dioxins/Furans Data

FIGURES

Figure 1 Figure 2	Project Location Map Site Map
Figure 3	Lackawanna Mill Site Soil Sampling – Sampling Locations
Figure 4	Lackawanna Mill Site Soil Sampling – Analytical Results Above NDEP RC: Processing Area
Figure 5	Lackawanna Mill Site Soil Sampling – Analytical Results Above NDEP RC: Ore Crushing Area

APPENDICES

Appendix A Chain-of-Custody Records and Laboratory Reports for Soil Samples

EXECUTIVE SUMMARY

McGinley & Associates (MGA) conducted a Limited Phase II Environmental Site Assessment (ESA) on a former mill site located approximately two miles north of Ely, Nevada on Lackawanna Road. The site is located on a portion of one parcel of land identified as White Pine County Assessor's Parcel Number (APN) 010-420-06. The investigation was conducted within a 40-acre area located in the northwestern portion of the site. The objective of the ESA activities was to assess for the presence of soil contamination within the three main areas of the former mill site. The soil investigation was performed concurrently with a Phase I ESA recently completed by MGA. Due to time constraints and increasing pressure from local residents to determine if the site may be hazardous, soil sampling activities conducted for this Limited Phase II ESA were performed concurrent with the Phase I site inspection.

For the Limited Phase II ESA, surface samples were collected at depths of zero to six inches below ground surface (bgs). In addition, samples were collected within soil and material piles found in the vicinity of the ore crushing and processing areas. Sample locations were chosen based on visual observation of potential contamination and previously available historical information. All collected soil samples were delivered to Alpha Analytical, Inc. (the laboratory) under proper Chain of Custody (COC) protocol and analyzed for poly-chlorinated biphenyls (PCBs), CAM 17 metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs), soil pH, and dioxins/furans. Analytical suites were chosen based upon MGA's conceptual understanding of the site and its uses.

The results of the analysis indicate that elevated levels of metals above the Nevada Division of Environmental Protection (NDEP) reportable concentration (RC), including antimony, arsenic, cadmium, chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc, are present in all soil samples collected at the site. In addition, one sample collected from a processed soil pile exhibited a concentration of benzo(a)pyrene above the NDEP RC and two samples collected in the vicinity of discarded power capacitors exhibited PCB concentrations greater than the NDEP RC for PCBs.

Upon conclusion of our Limited Phase II ESA, and based on analytical laboratory data for samples collected at the site, MGA is of the opinion that past mining practices performed on the former mill site have impacted the soil found on the site. However, the impact is not yet fully delineated. Therefore, further action is warranted at the subject property in order to fully characterize the site. This further action should include collection of additional soil samples proximal to the processing area and ball mill as well as within tailings ponds located beyond Lackawanna Road to the east.

At a minimum, two samples shall be collected from each stockpile. Multiple samples should be collected from larger stockpiles in order to provide a representative characterization. The debris pile located proximal to the processing area should also be characterized through sampling and analysis. Therefore, the collection of multiple samples located at various locations and depths within the pile is recommended.

In order to properly characterize the tailings ponds located east of Lackawanna Road, it is recommended that one sample per quarter acre be collected. In addition, it is recommended that groundwater samples beneath the tailings pond and downgradient of the ponds should be collected and analyzed for target analytes as well.

Lastly, a main concern of local residents is the discarded capacitors and potential PCB contamination proximal to those capacitors. Therefore, due to these immediate concerns, it is recommended that all capacitors and soil or material proximal to the capacitors be collected and disposed under local, state, and federal regulations.

1. INTRODUCTION

McGinley & Associates (MGA) conducted a Limited Phase II Environmental Site Assessment (ESA) on a former mill site located approximately two miles north of the City of Ely, Nevada. The site lies on a portion of one parcel of land that is listed with White Pine County, Nevada as Assessor's Parcel Number (APN) 010-420-06.

Based on the historical mining processes utilized at the mill site between the 1950s and 1980, a Phase II ESA was conducted in conjunction with a Phase I ESA recently completed by MGA to assess environmental impacts to soils from these past practices.

2. OBJECTIVES AND SCOPE OF SERVICES

The objective of the ESA activities was to assess for the presence of contaminants within processed soil/material piles and/or surface soil with the boundaries of the site and proximal to the portions of the site previously utilized during ore processing activities. As required by the State of Nevada Administrative Code (NAC) 459, all MGA services were supervised and reviewed by a Nevada Certified Environmental Manager (CEM).

The ESA activities performed by MGA for the limited Phase II ESA consisted of the following:

- Collection of surface soil samples from 13 locations within the site based upon visual observations and the understanding of the historical uses of the site;
- Collection of soil samples from stockpiles of unprocessed and processed material;
- Collection of an equipment rinsate blank;
- Laboratory analysis of these samples;
- Preparation of a technical report complete with findings and recommendations.

3. BACKGROUND

In April of 2012, a City of Ely Councilman toured the former mill site and found multiple discarded capacitors scattered around the former processing and refining area. The capacitors were found to be broken and/or damaged with staining noted on concrete proximal to the discarded equipment. Previously, the Councilman had received complaints that the site may be dangerous and had also discovered that the former mill site was a known gathering place for some local residents and local children. After his discovery, the Councilman contacted the Board of Commissioners and the Ely Fire Chief to discuss his concerns. At that time, MGA was introduced to representatives from the City of Ely and the Ely Fire Department to determine the necessary steps needed to initiate assessment of the site.

Soon thereafter, the City of Ely was granted funds through the State of Nevada Brownfields program to perform a Phase I ESA and collect initial soil samples within the boundaries of the mill site to determine environmental impacts from past activities. Therefore, in conjunction with the Phase I ESA site visit, surface soil sample collection was performed by MGA at the site.

The study area (the Site) occupies approximately 40 acres in Ely, Nevada (Figure 1). The area is bounded on the east by Steptoe Valley, on the south by undeveloped land, on the west by Squaw Peak, and on the north by undeveloped land with a residential home and commercial construction business located beyond. As shown on Figure 2, the Site consists of three distinct areas including the Processing Area, the Ore Crushing Area, and the Tailing Pond Area. Historical information and interviews indicate that the mill site was first developed in the 1950s and was utilized by multiple mining companies until 1980 when the mill was finally shut down indefinitely.

4. ENVIRONMENTAL INVESTIGATION

Limited Phase II ESA field activities were performed by MGA on June 13, 2012. Based on visual identification of potentially contaminated areas and MGA's understanding of the historical uses of the site, 16 soil samples were collected throughout the site. Soil sample locations included both 13 surface samples and three stockpile samples. Surface samples were collected at depths ranging between zero and six inches below ground surface. Stockpile samples were collected at a depth to provide an undisturbed sample for analysis. Laboratory-provided glass sample jars were filled at each sampling location using decontaminated sampling tools consisting of a stainless steel shovel or pick-axe, stainless steel sampling scoop, and a stainless steel sample collection bowl. All sampling tools were decontaminated between each sampling event and an equipment rinsate sample was collected during the investigation to ensure decontamination field procedures are acceptable. Samples were labeled SS- or SP- which designates the type of sample collected. SS refers to a surface soil sample and SP refers to a stockpile sample. Global positioning system (GPS) data was collected at each sampling location. These locations are shown on Figure 2.

5. ANALYTICAL TESTING

Collected soil samples were delivered under chain-of-custody protocol to Alpha Analytical, Inc. located in Sparks, Nevada. The following analyses were requested to be performed on the soil samples submitted:

- Poly-chlorinated biphenyls (PCBs): EPA Method SW8082;
- CAM 17 metals (dry weight): EPA Method 6020;
- Semi-volatile organic compounds (SVOCs): EPA Method 8270C;
- Volatile organic compounds (VOCs): EPA Method 8260B;
- Soil pH: EPA Method SW9045D; and
- Dioxins/Furans: EPA Method 1613B/8290

The chain-of-custody records for the soil samples are provided in Appendix A.

6. ANALYTICAL RESULTS

6.1 Summary of Results

Each collected soil sample was analyzed for parameters selected from the following: PCBs, CAM 17 metals, SVOCs, VOCs, soil pH, and dioxins/furans. The analytical results for the detected soil samples and each analytes corresponding NDEP Reportable Concentration (RC) based on the NDEP Draft Guidelines for Discovery Events (NAC 445A.345 to 445A.348 as amended by R125-07) are summarized in Table 1 through Table 6.

6.2 PCBs

Two surface soil samples collected proximal to discarded power capacitors contained PCB concentrations in excess of the NDEP RC. The capacitors did not appear to be leaking, but were rusty in appearance. One of the analyzed samples contained an estimated 1,500 mg/Kg of Aroclor 1242, which is above the NDEP RC (0.22 mg/Kg). This indicates a possible leak from

the capacitor. The other sample contained Aroclor 1248 at a concentration of 2.4 mg/Kg and Aroclor 1254 at 2.2 mg/Kg. The corresponding RCs for both Aroclor 1248 and 1254 is 0.22 mg/Kg. Two other samples had detected concentrations of Aroclor 1248 and Aroclor 1254. However, the concentrations were below the NDEP RC for each analyte.

6.3 Metals

All collected samples were analyzed for 17 metals commonly analyzed for sites similar to the subject property. The metals analyzed include Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Mercury, Molybdenum, Nickel, Selenium, Silver, Thallium, Vanadium, and Zinc. According to the analytical results, collected samples contained metals at concentrations above NDEP RCs. A range of concentrations for each metal is listed below:

- Antimony: < 1.0 2,600 mg/Kg (14 of 16 samples above the NDEP RC of 5 mg/Kg);
- Arsenic: 7.8 3,200 mg/Kg (16 of 16 samples above the NDEP RC of 11.1 mg/Kg);
- Barium: 57 1,500 mg/Kg (zero of 16 samples above the NDEP RC of 1,600 mg/Kg);
- Beryllium: < 0.52 1.0 mg/Kg (zero of 16 samples above the NDEP RC of 63 mg/Kg);
- Cadmium: 0.79 110 mg/Kg (10 of 16 samples above the NDEP RC of 8 mg/Kg);
- Chromium: 3.1 220 mg/Kg (two of 16 samples above the NDEP RC of 38 mg/Kg);
- Cobalt: 2.3 37 mg/Kg (two of 16 samples above the NDEP RC of 23 mg/Kg);
- Copper: 14 3,900 mg/Kg (one of 16 samples above the NDEP RC of 3,100 mg/Kg);
- Lead: 47 18,000 mg/Kg (10 of 16 samples above the NDEP RC of 400 mg/Kg);
- Mercury: 0.21 20 mg/Kg (four of 16 samples above the NDEP RC of 6.7 mg/Kg);
- Molybdenum: < 0.53 24 (zero of 16 samples above the NDEP RC of 390 mg/Kg);
- Nickel: 7.8 95 (zero of 16 samples above the NDEP RC of 130 mg/Kg);
- Selenium: < 0.53 12 mg/Kg (two of 16 samples above the NDEP RC of 5 mg/Kg);
- Silver: 7.1 810 mg/Kg (six of 16 samples above the NDEP RC of 34 mg/Kg);
- Thallium: < 0.52 2.4 mg/Kg (zero of 16 samples above the NDEP RC 5.1 mg/Kg);
- Vanadium: 9.4 45 mg/Kg (zero of 16 samples above the NDEP RC of 390 mg/Kg); and
- Zinc: 67 13,000 mg/Kg (two of 16 samples above the NDEP RC of 12,000 mg/Kg).

6.4 SVOCs

Several SVOC analytes were detected at concentrations greater than the laboratory reporting limits. However, only one collected sample contained a detected SVOC analyte, benzo(a)pyrene, above its corresponding NDEP RC of 0.015 mg/Kg for soils. The sample was collected from a stockpile located near the southern boundary of the processing area (see Figures 3 and 4). Laboratory results for this sample show benzo(a)pyrene at a concentration of 0.062 mg/Kg.

6.5 VOCs

There were no VOCs detected above laboratory reporting limits for any of the samples collected.

6.6 Soil pH

Results for pH in collected samples show that all samples were alkaline and ranged between 7.7 and 12.0. However, it should be noted that only one sample (SP-01) was higher than 9.6 while the remaining 15 samples ranged from 7.7 to 9.5. The one sample with a pH of 12.0 (SP-01) was collected from a stockpile located proximal to the upper portion of the processing area. This soil may have been material stockpiled as a source of lime for pH adjustment prior to cyanide treatment of ore material.

6.7 Dioxins/Furans

There were no dioxin- and/or furan-compounds detected above NDEP RCs for any of the samples collected.

7. DATA QUALITY

7.1 Soil Sampling

The soil samples were collected in accordance with EPA and MGA SOPs. Care was taken to minimize sample disturbance. Soil samples were preserved in coolers with ice until they were received by the laboratory (see chain-of-custody records provided in Appendix A). At the request of NDEP, no duplicate soil samples were collected for this limited assessment.

7.2 Laboratory Analytical Data for Soils

The laboratory analytical data for the soil samples were in compliance with the data quality objectives established in the laboratory's SOP. According to the QC Summary Report supplied by Alpha Analytical, several qualifiers were noted in the analysis of the sample matrix spike (MS) and sample matrix spike duplicate (MSD). These qualifiers indicate that the accuracy of the spike recovery value is reduced due to a disproportionate analyte concentration in relation to the spike level. However, analysis of the method blank and laboratory control spike (LCS) samples were all within control limits. These data are all believed to be usable for their intended purpose. Quality Control data can be found within the laboratory analytical package in Appendix A.

8. SUMMARY OF FIELD ACTIVITIES

- The 40 acre site was assessed for potential contamination in surface soils;
- Surface soil samples were collected from 13 locations throughout the site;
- Surface soil samples were collected at depths of zero to six inches below ground surface at each sample location;
- Stockpile samples were collected from three locations throughout the site;
- Stockpile samples were collected at a depth within the stockpile to provide a sample representative of the entire stockpile;
- One field equipment rinsate sample was collected during the sampling event;
- Laboratory supplied soil jars were collected at each soil sample location; and
- Decontamination of field equipment was performed between collections of soil samples from each sample location.

9. FINDINGS

- Soil samples were analyzed for PCBs, CAM-17 metals, SVOCs, VOCs, soil pH, and dioxins/furans:
- Complete soil analytical results are summarized in Table 1 through Table 6;
- Two soil samples submitted contained PCB concentrations above the NDEP RC in soil;
- All soil samples submitted contained at least one analyte at a concentration above the NDEP RC in soil;
- One soil sample submitted contained benzo(a)pyrene at a concentration above the NDEP RC

in soil:

- None of the samples submitted contained VOCs or dioxins/furans above the discovery event NDEP RC in soils:
- None of the samples submitted contained barium, beryllium, molybdenum, nickel, thallium, or vanadium above the NDEP RC in soil;
- All samples submitted contained arsenic above the NDEP RC of 0.39 mg/Kg and ranged between 7.8 and 3,200 mg/Kg.
- One soil sample collected from an area that appears to have been utilized by the mill as a flotation pond contained arsenic, lead, and zinc at concentrations greater than those of all other soil samples collected for this assessment;

10. CONCLUSIONS AND RECOMMENDATIONS

McGinley & Associates was contracted by the NDEP on behalf of the City of Ely to perform a Limited Phase II ESA on the subject property located approximately two miles north of the City of Ely in White Pine County, Nevada. The former mill site exists on a portion of one parcel of land that is listed with White Pine County, Nevada as APN 010-420-06. The ESA activities were supervised and reviewed by a Nevada Certified Environmental Manager (CEM) as required by the State of Nevada NAC 459.

The field work conducted by MGA included collection of thirteen surface soil samples, three stockpile samples, and one equipment rinsate sample. Surface samples were collected at depths of zero to six inches below ground surface, while stockpile samples were collected at a depth within the stockpile to provide an undisturbed sample for analysis. All samples were delivered under Chain of Custody protocol to Alpha Analytical, Inc. for analysis of PCBs, metals, SVOCs, VOCs, soil pH, and dioxins/furans. The results of the soil sample analyses are described below:

- The soil sample analyses for metals showed concentrations of arsenic, antimony, cadmium, chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc above NDEP RCs in various samples collected. Concentrations reported indicate a possible concentration effect from past mill site processing activities.
- The soil samples collected proximal to discarded power capacitors showed concentrations of PCBs well above the NDEP RC in soil. At the time of the sampling event, the discarded capacitors at these locations appeared to be rusty and without leaks. Additionally, only two other samples collected during this assessment exhibited concentrations of PCBs above laboratory detection limits. These samples were located beneath the smelter equipment and within the debris pile respectively. At the time of the sampling event, a capacitor was noted within a portion of the debris pile. It is unknown if more capacitors exist within the pile. Based on these results, it appears that any capacitor found at the mill location should be treated as a possible contributor to PCB soil contamination in the immediate vicinity of the capacitor.
- The soil sample analyses for SVOCs showed that only one sample collected exhibited concentrations of target analytes above NDEP RC in soil. The sample had a concentration of benzo(a)pyrene approximately four times the NDEP RC of 0.015 mg/Kg. The sample was collected within a stockpile of reddish, fine/silty material located near the southern boundary of the processing area (see Figure 4). According to historical information, this stockpile appears to be tailings material.
- Laboratory analysis indicates that none of the samples collected contained concentrations of VOCs or dioxins/furans at levels above NDEP RC in soil.
- Laboratory analysis indicates that all samples collected for the assessment were alkaline in nature. Of the sixteen samples, fifteen exhibited pH values between 7.7 and 9.5. One

sample exhibited a pH of 12.0 and appears to have been collected from a grayish-white stockpile that may contain a high percentage of lime that was used for pH adjustment in the processing of ore.

Upon conclusion of our Limited Phase II ESA, and based on analytical laboratory data for samples collected at the site, MGA is of the opinion that past mining practices performed on the former mill site have impacted the soil found on the site. However, the impact is not yet fully delineated. Therefore, further action is warranted at the subject property in order to fully characterize the site. This further action should include collection of additional soil samples proximal to the processing area and ball mill as well as within tailings ponds located beyond Lackawanna Road to the east.

At a minimum, two samples shall be collected from each stockpile. Multiple samples should be collected from larger stockpiles in order to provide a representative characterization. The debris pile located proximal to the processing area should also be characterized through sampling and analysis. Therefore, the collection of multiple samples located at various locations and depths within the pile is recommended.

In order to properly characterize the tailings ponds located east of Lackawanna Road, it is recommended that one sample per quarter acre be collected. In addition, it is recommended that groundwater samples beneath the tailings pond and downgradient of the ponds should be collected and analyzed for target analytes as well.

Lastly, a main concern of local residents is the discarded capacitors and potential PCB contamination proximal to those capacitors. Therefore, due to these immediate concerns, it is recommended that all capacitors and soil or material proximal to the capacitors be collected and disposed under local, state, and federal regulations.

11. LIMITATIONS

The conclusions presented herein are based on analytical data and observations. MGA makes no warranties or guarantees as to the accuracy or completeness of information provided or compiled by others. The results reported herein are applicable to the time the sampling occurred. Changes in site conditions may occur as a result of illegal dumping practices, prevailing winds, rainfall, or other factors.

It should be recognized that definition and evaluation of environmental conditions is a difficult and inexact science. Judgments and opinions leading to conclusions and recommendations are generally made with an incomplete knowledge of the conditions present. More extensive studies, including additional environmental investigations, can tend to reduce the inherent uncertainties associated with such studies. Additional information not found or unavailable to MGA at the time of writing this report may result in a modification to the conclusions and recommendations contained herein.

This report is not a legal opinion. The services performed by MGA have been conducted in a manner consistent with the level of care ordinarily exercised by members of our profession currently practicing under similar conditions. No other warranty, expressed or implied, is made.

The use of the word "certify" in this document constitutes an expression of professional opinion regarding those facts or findings which are the subject of the certification and does not constitute a warranty or guarantee, either expressed or implied.

12. CLOSING

Should you have any questions regarding this report please contact Brett Bottenberg at (702) 260-4961, ext.-7003.

Respectfully submitted,

McGinley and Associates, Inc.

We hereby certify that we are responsible for the services described in this document and for the preparation of this document. The services described in this document have been provided in a manner consistent with the current standards of the profession and to the best of my knowledge comply with all applicable federal, state and local statutes, regulations, and ordinances.

Brett C. Bottenberg, C.E.M. #1690, Exp. 10/07/13

Senior Project Manager

Reviewed by:

Joseph M. McGinley, P.E., C.E.M. #1036, Exp. 11/12

Principal

13. REFERENCES

NDEP Draft Guidelines for Discovery Events, Issues relating to required notification under NAC445A.345 to 445A.348 (Soil RCs) as amended by R125-07. Nevada Division of Environmental Protection, February 2009.

Nevada Division of Environmental Protection Screening/Action Level for Arsenic in Surface Soil in the Carson River Basin, NDEP.

Statistical Analysis of Background Concentrations of Selected Metals in Surface and Near-Surface Soils, Fiesta Park, Henderson, Nevada, CivilWorks, Inc., May 2004.

Water Quality in the Las Vegas Valley Area and the Carson and Truckee River Basins, Nevada and California, Bevans, H.E.; Lico, M.S.; Lawrence, S.J.; 1992-96; updated March 19, 1998.

Table 1 - Summary of Soil PCB Data

Location	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
LVBRN014-SS-02	ND	ND	ND	ND	ND	ND	ND
LVBRN014-SS-03	ND	ND	ND	ND	0.05	0.13	ND
LVBRN014-SS-05	ND	ND	ND	ND	0.18	0.035	ND
LVBRN014-SS-07	ND	ND	ND	ND	ND	ND	ND
LVBRN014-SS-09	ND	ND	ND	ND	ND	ND	ND
LVBRN014-SS-11	ND	ND	ND	ND	ND	ND	ND
LVBRN014-SS-13	ND	ND	ND	ND	ND	ND	ND
LVBRN014-SS-15	ND	ND	ND	1,500 ^J	ND	ND	ND
LVBRN014-SS-16	ND	ND	ND	ND	2.4	2.2	ND
NDEP RC	3.9	0.17	0.17	0.22	0.22	0.22	0.22

- 1. Detected concentrations are presented in bold.
- 2. Concentrations greater than the NDEP Reportable Concentration are highlighted in yellow.
- 3. NDEP RC = NDEP Reportable Concentration
- 4. All concentrations are in (mg/Kg).
- 5. ND = Not Detectable
- 6. J = Estimated Concentration

Table 2 - Summary of Soil Metals Data

Location	Antimony (Sb)	Arsenic (As)	Barium (Ba)	Beryllium (Be)	Cadmium (Ca)	Chromium (Cr)	Cobalt (Co)	Copper (Cu)	Lead (Pb)	Мегсигу (Нд)	Molybdenum (Me)	Nickel (NI)	Selenium (Se)	Silver (Ag)	Thallium (TI)	Vanadium (V)	Zinc (Zn)	Percent Moisture (%)
LVBRN014-SP-01	2600	170	170	< 1.4	100	220	37	3,900	2,700	20	9.8	95	3.3	810	1.5	45	12,000	27
LVBRN014-SS-02	63	400	130	< 1.0	49	14	20	2,600	5,900	1.2	5.6	25	9.9	190	< 1.0	21	7,100	3.2
LVBRN014-SS-03	64	27	140	< 1.1	13	13	4.6	69	3,600	4.2	< 1.1	16	1.2	77	< 1.1	20	1,800	5.3
LVBRN014-SP-04	1,700	2,700	92	< 1.0	74	3.1	4	1,000	11,000	9.3	12	8.4	2.8	68	2.4	14	10,000	3.3
LVBRN014-SS-05	660	140	260	< 1.1	46	91	13	970	7,100	11	4.8	45	3.9	520	< 1.1	35	3,700	7.2
LVBRN014-SS-06	11	7.8	84	< 0.53	0.58	8.1	2.3	14	130	0.3	< 0.53	7.8	< 0.53	9.4	< 0.53	9.4	67	5.3
LVBRN014-SS-07	<1.0	12	190	<1.0	<1.0	16	4.3	20	47	0.21	<1.0	15	<1.0	7.1	< 1.0	22	84	3
LVBRN014-SS-08	13	18	160	< 1.0	1.8	20	4.9	52	140	0.53	< 1.0	17	< 1.0	30	< 1.0	24	220	1.7
LVBRN014-SS-09	3.8	12	130	< 0.52	0.79	12	3.5	22	63	0.61	0.63	13	0.58	8.4	< 0.52	18	120	3.4
LVBRN014-SP-10	30	83	57	1	53	52	24	400	1,500	0.98	24	36	12	25	< 0.56	36	4,000	10
LVBRN014-SS-11	2,000	3,200	330	< 1.1	110	7.9	3	580	18,000	11	18	9.6	3.9	41	2.2	18	13,000	8.4
LVBRN014-SS-12	690	900	1,500	< 1.0	40	8.8	3.7	310	6,000	4.8	5.1	13	2.2	21	< 1.0	10	7,300	1.7
LVBRN014-SS-13	49	78	220	< 1.0	10	16	5.6	150	840	3.6	18	18	2.4	29	< 1.0	22	1,100	2.1
LVBRN014-SS-14	51	61	190	< 1.0	13	22	6.5	200	960	1.1	6.7	17	3.8	21	< 1.0	26	1,200	1.9
LVBRN014-SS-15	9.7	15	170	< 1.0	1.7	16	5.2	35	160	0.45	< 1.0	17	< 1.0	16	< 1.0	21	200	1.8
LVBRN014-SS-16	8.9	15	210	< 1.0	1.4	20	5.9	31	110	0.47	< 1.0	20	1.2	24	< 1.0	25	250	3
NDEP RC	5	0.39	1,600	63	8	38	23	3,100	400	6.7	390	130	5	34	5.1	390	12,000	

- 1. Detected concentrations are presented in bold.
- 2. Concentrations greater than the NDEP Reportable Concentration are highlighted in yellow.
- 3. NDEP RC = NDEP Reportable Concentration
- 4. All concentrations are in (mg/Kg dry weight).
- 5. ND = Not Detectable
- 6. NA = Not Analyzed
- 7. SP = Soil Pile
- 8. SS = Surface Soil

^{*} Background Sample collected upgradient of mill site by EPA (1980)

Table 3 - Summary of Soil SVOC Data

Location	Acenapthene	Acenapthylene	Anthracene		Benzo(a)pyrene	Benzo(b&k)fluoranu	Benzo(g,h,i)pervler	Chrysene	Dibenz(a,h)anthra	Fluoranthene	Fluorene	Indeno(1,2,3-cd)p	1-Methylnaphthal	2-Methylnaphthal	Naphthalene	Phenanthrene	Ругепе	
LVBRN014-SP-01	ND	ND	ND	ND	ND	ND	ND	0.04	ND	0.064	ND	ND	ND	ND	ND	0.06	0.055	
LVBRN014-SS-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SS-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SP-04	ND	ND	ND	0.067	0.062	0.084	0.026	0.07	ND	0.16	ND	0.036	ND	ND	ND	0.089	0.15	
LVBRN014-SS-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.028	ND	ND	ND	ND	ND	ND	0.035	
LVBRN014-SS-06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SS-07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SS-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SS-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SP-10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SS-11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SS-12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SS-13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SS-14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SS-15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
LVBRN014-SS-16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
NDEP RC	570	NA	12,000	0.15	0.015	0.15	NA	15	0.015	2,300	560	0.15	22	310	4	NA	1,700	

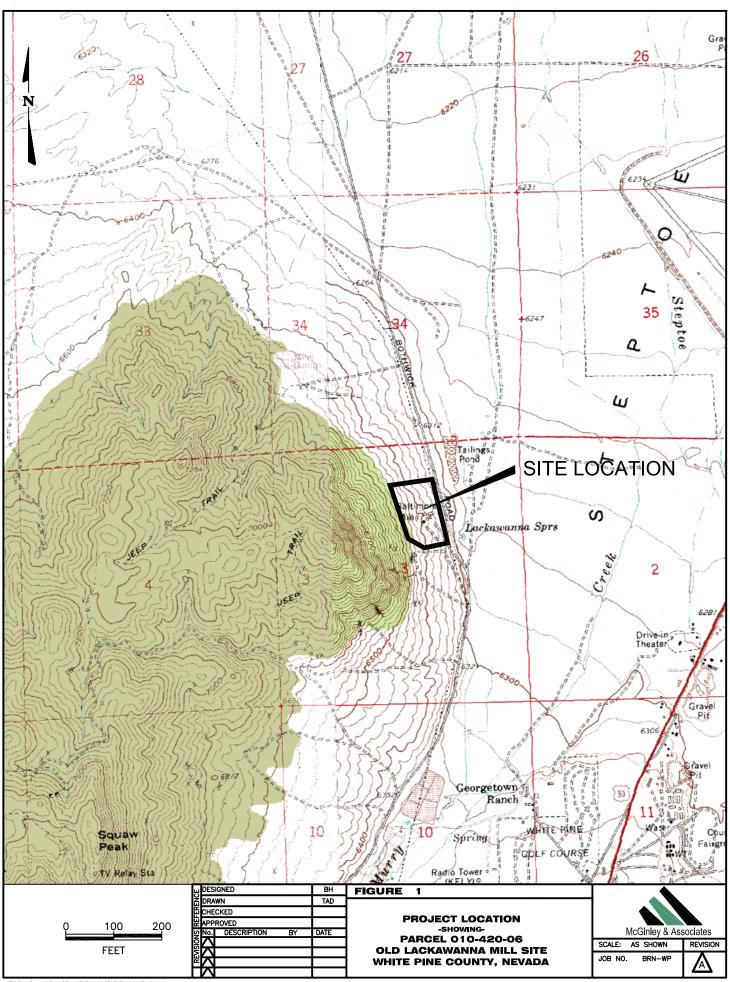
- 1. Detected concentrations are presented in bold.
- 2. Concentrations greater than the NDEP Reportable Concentration are highlighted in yellow.
- 3. NDEP RC = NDEP Reportable Concentration
- 4. All concentrations are in (mg/Kg).
- 5. ND = Not Detectable
- 6. NA = Not Available

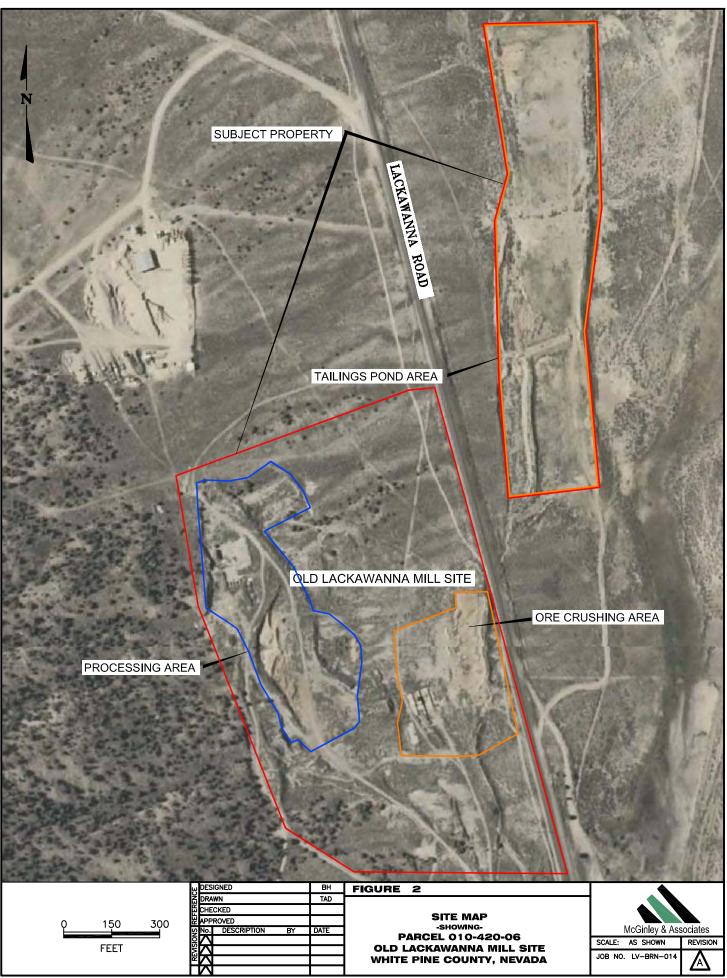
Table 4 - Summary of Soil VOC Data

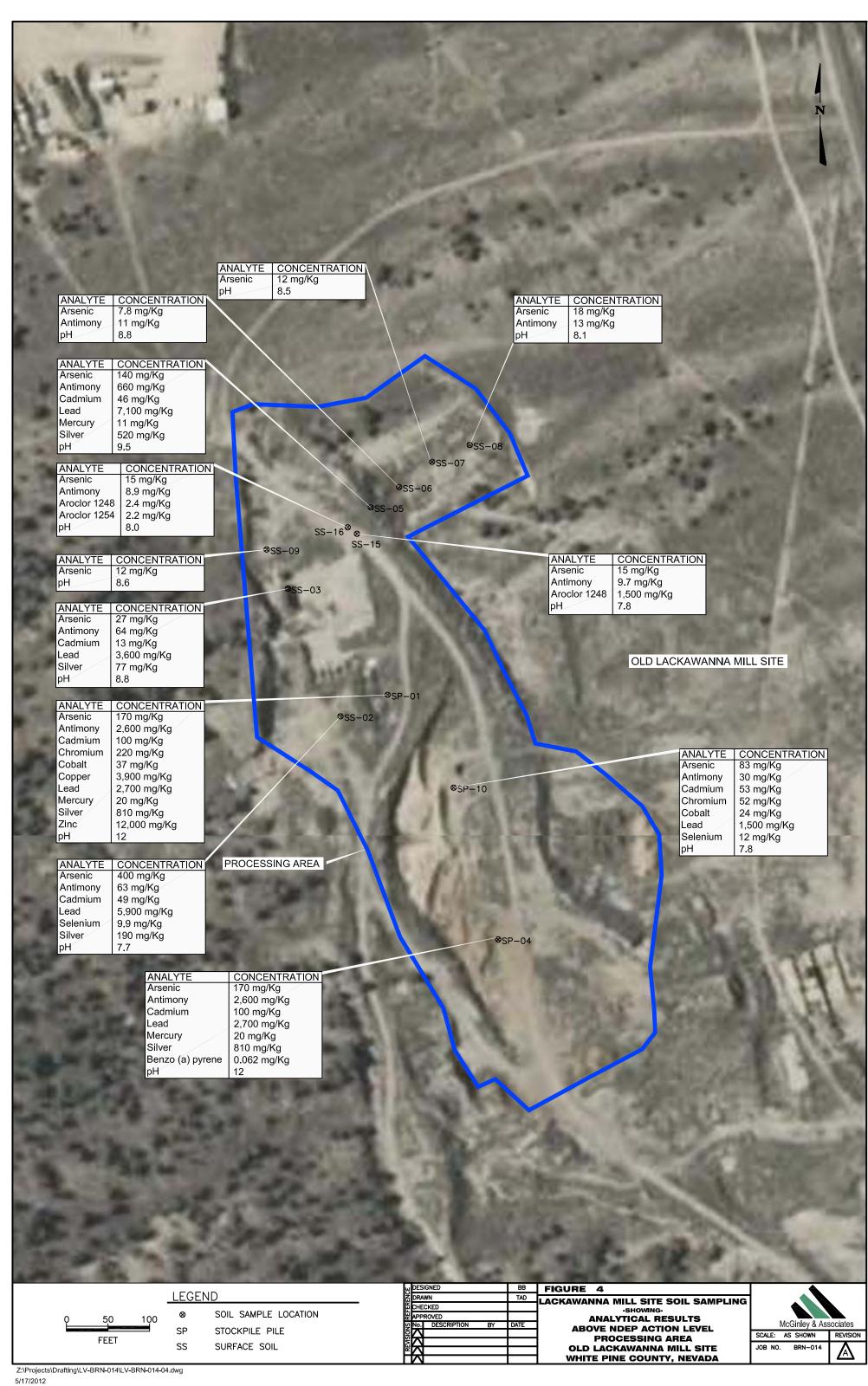
Location	1,1,1-Trichlora	1,1,2,2-Tetrack	1,1,2-Trichlo	1,1-Dichlorggu	1,1-Dichlor	1,2-Dichlorat	1,2-Dichlor	1,2-Dichlor	1,3-Dichlorat	1,4-Dichlorak	Benzene	Bromodichic	Bromoform	Bromometh	Carbon tetraci	Chlorobenza	СНогоење	Chloroform	Chlorometh	cis-1,2-Dict.	cis-1,3.Dich.	Dibromockie	Dichloroman	Ethylbenzos	m.p.Xylene	o-Xylene	7etrachloro	Toluene	trans-1,2-Dick.	trans-1,3-Dichu	Trichlorgeth	Trichlorofluors	1 .5 1
LVBRN014-SS-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LVBRN014-SS-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Equipment Blank	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NDEP RC	2000	3	20	3400	60	17000	20	30	NA	2000	30	600	800	200	70	1000	NA	300	1700	400	NA	400	NA	5700	210000	210000	60	12000	700	NA	60	800000	10

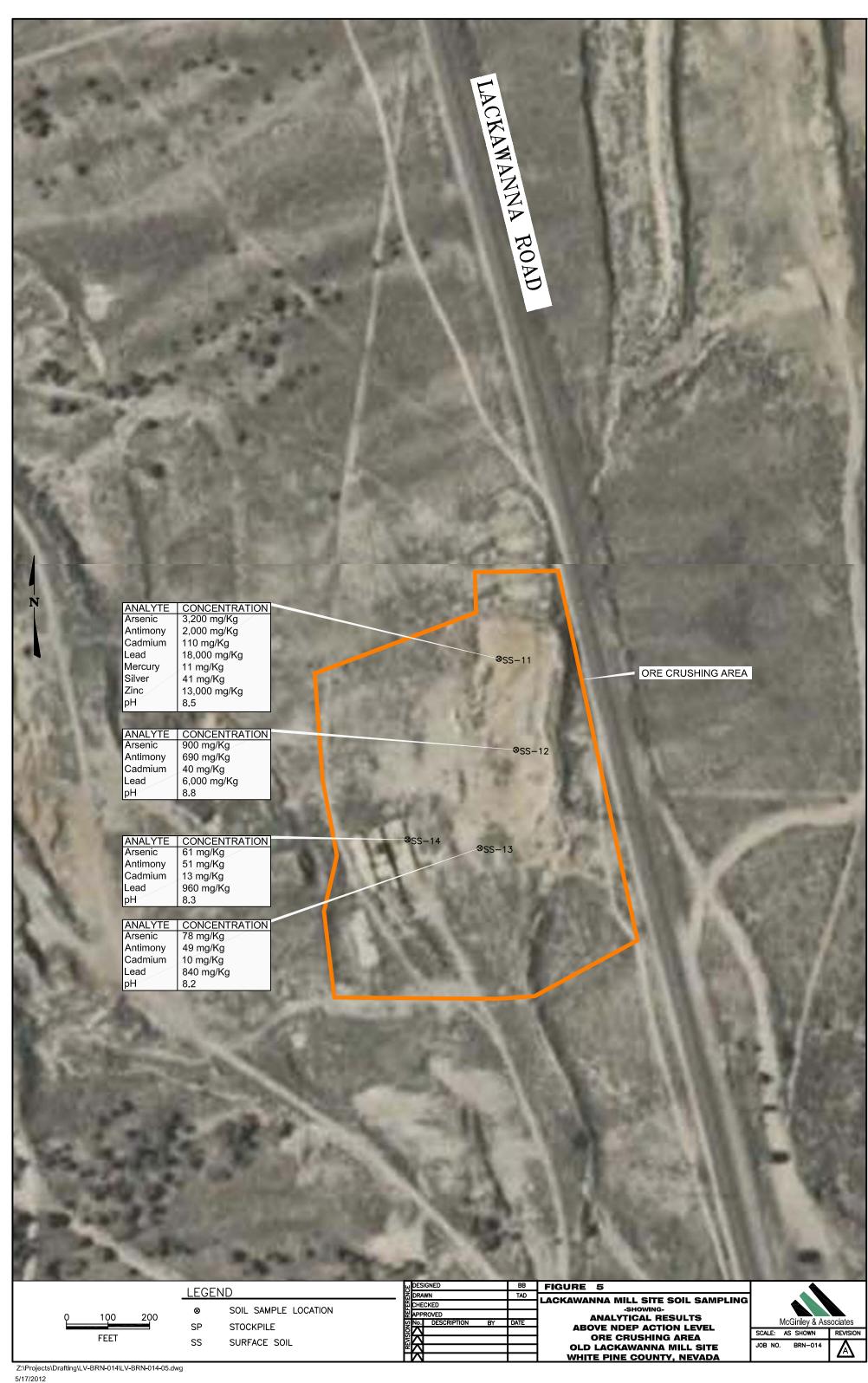
- 1. Detected concentrations are presented in bold.
- 2. Concentrations greater than the NDEP Reportable Concentration are highlighted in yellow.
- 3. NDEP RC = NDEP Reportable Concentration
- 4. All concentrations are in (µg/Kg).5. ND = Not Detectable
- 6. NA = Not Available

Table 5 - Summary of Soil pH Data


Location	pH
LVBRN014-SP-01	12.0
LVBRN014-SS-02	7.7
LVBRN014-SS-03	8.8
LVBRN014-SP-04	8.8
LVBRN014-SS-05	9.5
LVBRN014-SS-06	8.8
LVBRN014-SS-07	8.5
LVBRN014-SS-08	8.1
LVBRN014-SS-09	8.6
LVBRN014-SP-10	7.8
LVBRN014-SS-11	8.5
LVBRN014-SS-12	8.8
LVBRN014-SS-13	8.2
LVBRN014-SS-14	8.3
LVBRN014-SS-15	7.8
LVBRN014-SS-16	8.0


Table 6 - Summary of Soil Dioxins/Furans Data


Location	2,3,7,8-TCDD	7,2,3,7,8-PeCDD	7,2,3,4,7,8-HxCDD	7,2,3,6,7,8-HxCDD	7,2,3,7,8,9.HxCDD	7,2,3,4,6,7,8-HpCps	OCDD and	2,3,7,8-TCDF	^{7,2,3,7,8-PeCDF}	2,3,4,7,8-PeCDF	7,2,3,4,7,8-HXCDE	7,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDE	1,2,3,7,8,9-HxCDF	1,2,3,4,6,7,8-HpCnF	1,2,3,4,7,8,9-HpCDE	OCDF	Percent Moisture (%)	
LVBRN014-SP-01	ND	ND	ND	0.287	0.199	5.95	43.9	ND	ND	0.138	0.0871	0.0892	0.0887	ND	0.423	ND	1.33	7.3	
LVBRN014-SP-04	ND	ND	ND	ND	ND	1.33	8.7	ND	ND	ND	ND	ND	ND	ND	0.133	ND	0.316	2.8	
LVBRN014-SS-11	ND	0.101	0.192	1.12	0.506	19.1	105	ND	ND	0.213	0.0821	0.0994	0.165	ND	0.614	0.0713	1.14	7.1	
NDEP RC	4.5	4.5	45	45	45	450	15,000	37	120	12	37	37	37	37	370	370	12,000		


- 1. Detected concentrations are presented in bold.
- 2. Concentrations greater than the NDEP Reportable Concentration are highlighted in yellow.
- 3. NDEP RC = NDEP Reportable Concentration
- 4. All concentrations are in (pg/g dry weight).
- 5. ND = Not Detectable
- 6. NA = Not Analyzed
- 7. SP = Soil Pile
- 8. SS = Surface Soil

^{*} Background Sample collected upgradient of mill site by EPA in 1980

APPENDIX A

Chain-of-Custody Records and Laboratory Reports for Soil Samples

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn: Brett Bottenberg

Phone: (702) 260-4961 Fax: (702) 260-4968

Date Received: 06/15/12

Job: LVRRN014/Lackawanna Mill

Polychlorinated Biphenyls (PCBs) EPA Method SW8082

	Parameter	Conce	entration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: LVBRN014-SS-02						
Lab ID: MGA12061524-02A	Aroclor 1016	ND	D	330 µg/Kg	06/18/12	06/21/12
Date Sampled 06/13/12 10:40	Aroclor 1221	ND	D	330 μg/Kg	06/18/12	06/21/12
- m. campies co, 12, 12 10.10	Aroclor 1232	ND	D	330 μg/Kg	06/18/12	06/21/12
	Aroclor 1242	ND	D	330 μg/Kg	06/18/12	06/21/12
	Aroclor 1248	ND	D	330 μg/Kg	06/18/12	06/21/12
	Aroclor 1254	ND	D	330 μg/Kg	06/18/12	06/21/12
	Aroclor 1260	ND	D	330 µg/Kg	06/18/12	06/21/12
	Surr: Tetrachloro-m-xylene	91		(41-152) %REC	06/18/12	06/21/12
	Surr: Decachlorobiphenyl	51		(39-163) %REC	06/18/12	06/21/12
Client ID: LVBRN014-SS-03						
Lab ID: MGA12061524-03A	Aroclor 1016	ND		33 μg/Kg	06/18/12	06/21/12
Date Sampled 06/13/12 11:05	Aroclor 1221	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1232	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1242	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1248	50		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1254	130		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1260	ND		33 μg/ K g	06/18/12	06/21/12
	Surr: Tetrachloro-m-xylene	114		(41-152) %REC	06/18/12	06/21/12
	Surr: Decachlorobiphenyl	119		(39-163) %REC	06/18/12	06/21/12
Client ID: LVBRN014-SS-05						
Lab ID: MGA12061524-06A	Aroclor 1016	ND		33 μg/Kg	06/18/12	06/21/12
Date Sampled 06/13/12 11:40	Aroclor 1221	ND		33 μg/Kg	06/18/12	06/21/12
•	Aroclor 1232	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1242	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1248	180		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1254	35		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1260	ND		33 μg/Kg	06/18/12	06/21/12
	Surr: Tetrachloro-m-xylene	109		(41-152) %REC	06/18/12	06/21/12
	Surr: Decachlorobiphenyl	116		(39-163) %REC	06/18/12	06/21/12
Client ID: LVBRN014-SS-07						
Lab ID: MGA12061524-08A	Aroclor 1016	ND		33 μg/Kg	06/18/12	06/21/12
Date Sampled 06/13/12 12:05	Aroclor 1221	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1232	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1242	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1248	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1254	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1260	ND		33 μg/Kg	06/18/12	06/21/12
	Surr: Tetrachloro-m-xylene	110		(41-152) %REC	06/18/12	06/21/12
	Surr: Decachlorobiphenyl	114		(39-163) %REC	06/18/12	06/21/12

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID: LVBRN014-SS-09						
Lab ID: MGA12061524-10A	Araclar 1016	ND		33 μg/Kg	06/18/12	06/21/12
Date Sampled 06/13/12 12:40		ND ND		33 μg/Kg 33 μg/Kg	06/18/12	06/21/12
Date Sampled 00/13/12 12.40	Aroclor 1232	ND ND		33 μg/Kg 33 μg/Kg	06/18/12	06/21/12
	Aroclor 1242	ND ND		33 μg/Kg 33 μg/Kg	06/18/12	06/21/12
	Aroclor 1248	ND ND		33 μg/Kg 33 μg/Kg	06/18/12	06/21/12
	Aroclor 1254	ND		33 μg/Kg 33 μg/Kg	06/18/12	06/21/12
	Aroclor 1260	ND ND		33 μg/Kg 33 μg/Kg	06/18/12	06/21/12
	Surr: Tetrachloro-m-xylene	118		(41-152) %REC	06/18/12	06/21/12
	Surr: Decachlorobiphenyl	123		(39-163) %REC	06/18/12	06/21/12
Client ID. I VIDDBIOLA CC 11	Suit. Decacinoroorphenyr	, 123		(39-103) /0REC	00/18/12	00/21/12
Client ID: LVBRN014-SS-11						
Lab ID: MGA12061524-12A		ND		33 μg/ K g	06/18/12	06/21/12
Date Sampled 06/13/12 14:55	Aroclor 1221	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1232	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1242	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1248	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1254	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1260	ND		33 μg/Kg	06/18/12	06/21/12
	Surr: Tetrachloro-m-xylene	118		(41-152) %REC	06/18/12	06/21/12
	Surr: Decachlorobiphenyl	123		(39-163) %REC	06/18/12	06/21/12
Client ID: LVBRN014-SS-13						
Lab ID: MGA12061524-14A	Aroclor 1016	ND		33 μg/Kg	06/18/12	06/21/12
Date Sampled 06/13/12 15:25	Aroclor 1221	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1232	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1242	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1248	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1254	ND		33 μg/Kg	06/18/12	06/21/12
	Aroclor 1260	ND		33 μg/Kg 33 μg/Kg	06/18/12	06/21/12
	Surr: Tetrachloro-m-xylene	119		33 μg/kg (41-152) %REC	06/18/12	06/21/12
	Surr: Decachlorobiphenyl	122		(39-163) %REC	06/18/12	06/21/12
Client ID: LVBRN014-SS-15		122		(3) 103) / 1120	00/10/12	00/21/12
Lab ID: MGA12061524-16A	A 1 1016					
		ND		33,000 µg/Kg	06/18/12	06/22/12
Date Sampled 06/13/12 16:10	Aroclor 1221	ND		33,000 μg/Kg	06/18/12	06/22/12
	Aroclor 1232	ND		33,000 μg/Kg	06/18/12	06/22/12
	Aroclor 1242	1,500,000	J	33,000 μg/Kg	06/18/12	06/22/12
	Aroclor 1248	ND		33,000 μg/Kg	06/18/12	06/22/12
	Aroclor 1254	ND		33,000 μg/Kg	06/18/12	06/22/12
	Aroclor 1260	ND		33,000 μg/Kg	06/18/12	06/22/12
	Surr: Tetrachloro-m-xylene	0	S50	(41-152) %REC	06/18/12	06/22/12
	Surr: Decachlorobiphenyl	0	S50	(39-163) %REC	06/18/12	06/22/12
Client ID: LVBRN014-SS-16						
Lab ID: MGA12061524-17A	Aroclor 1016	ND		33 μg/Kg	06/18/12	06/22/12
Date Sampled 06/13/12 16:20	Aroclor 1221	ND		33 μg/Kg	06/18/12	06/22/12
-	Aroclor 1232	ND		33 μg/Kg	06/18/12	06/22/12
	Aroclor 1242	ND		33 μg/Kg	06/18/12	06/22/12
	Aroclor 1248	2,400		33 μg/Kg	06/18/12	06/22/12
	Aroclor 1254	2,200		33 μg/Kg	06/18/12	06/22/12
	Aroclor 1260	ND		33 μg/Kg	06/18/12	06/22/12
	Surr: Tetrachloro-m-xylene	118		(41-152) %REC	06/18/12	06/22/12
	Surr: Decachlorobiphenyl	132		(39-163) %REC	06/18/12	06/22/12
	1 7 -	-~-		(-,, , , , , , , , , , , , , , , , ,		/

LVRRN014/Lackawanna Mill Page 2 of 3

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

D = Reporting Limits were increased due to high concentrations of non-target analytes.

J = The analyte was positively identified, the associated numerical value is the approximate concentration of the analyte in the sample.

S50 = The analysis of the sample required a dilution such that the surrogate concentration was diluted below the laboratory acceptance criteria. The laboratory control sample recovery was acceptable.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

Roger Scholl Kandy Saulur Dalter Arrihner Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

6/22/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118 Attn: Brett Bottenberg Phone: (702) 260-4961

Phone: (702) 260-4961 Fax: (702) 260-4968

Date Received: 06/15/12

Job: LVRRN014/Lackawanna Mill

Metals by ICPMS EPA Method SW6020 / SW6020A

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: EQUIP. BLANK					
Lab ID: MGA12061524-04A	Beryllium (Be)	ND	0.0040~mg/L	06/18/12	06/19/12
Date Sampled 06/13/12 11:20	Vanadium (V)	ND	0.0050 mg/L	06/18/12	06/19/12
•	Chromium (Cr)	ND	0.0050 mg/L	06/18/12	06/19/12
	Cobalt (Co)	ND	0.0050 mg/L	06/18/12	06/19/12
	Nickel (Ni)	ND	0.010 mg/L	06/18/12	06/19/12
	Copper (Cu)	0.011	0.010 mg/L	06/18/12	06/19/12
	Zinc (Zn)	ND	0.10 mg/L	06/18/12	06/19/12
	Arsenic (As)	ND	0.0050 mg/L	06/18/12	06/19/12
	Selenium (Se)	ND	0.0050 mg/L	06/18/12	06/19/12
	Molybdenum (Mo)	ND	0.0050 mg/L	06/18/12	06/19/12
	Silver (Ag)	ND	0.0050 mg/L	06/18/12	06/19/12
	Cadmium (Cd)	ND	0.0050 mg/L	06/18/12	06/19/12
	Antimony (Sb)	ND	0.0050 mg/L	06/18/12	06/19/12
	Barium (Ba)	ND	0.0050 mg/L	06/18/12	06/19/12
	Mercury (Hg)	ND	0.0010 mg/L	06/18/12	06/19/12
	Thallium (Tl)	ND	0.0020 mg/L	06/18/12	06/19/12
	Lead (Pb)	0.034	0.0050 mg/L	06/18/12	06/19/12

ND = Not Detected

Roger Scholl Kandy Saulur

Walter Hiriham

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com
Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical. Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

6/21/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118 Attn: Brett Bottenberg

Phone: (702) 260-4961 Fax: (702) 260-4968

Date Received: 06/15/12

Job:

LVRRN014/Lackawanna Mill

Metals by ICPMS EPA Method SW6020 / SW6020A

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: LVBRN014-SP-01					
Lab ID: MGA12061524-01A	Beryllium (Be)	ND	1.4 mg/Kg-dry	06/18/12	06/19/12
Date Sampled 06/13/12 10:00	Vanadium (V)	45	1.4 mg/Kg-dry	06/18/12	06/19/12
•	Chromium (Cr)	220	1.4 mg/Kg-dry	06/18/12	06/19/12
	Cobalt (Co)	37	1.4 mg/Kg-dry	06/18/12	06/19/12
	Nickel (Ni)	95	2.7 mg/Kg-dry	06/18/12	06/19/12
	Copper (Cu)	3,900	2.7 mg/Kg-dry	06/18/12	06/19/12
	Zinc (Zn)	12,000	140 mg/Kg-dry	06/18/12	06/19/12
	Arsenic (As)	170	1.4 mg/Kg-dry	06/18/12	06/19/12
	Selenium (Se)	3.3	1.4 mg/Kg-dry	06/18/12	06/19/12
	Molybdenum (Mo)	9.8	1.4 mg/Kg-dry	06/18/12	06/19/12
	Silver (Ag)	810	6.8 mg/Kg-dry	06/18/12	06/19/12
	Cadmium (Cd)	100	1.4 mg/Kg-dry	06/18/12	06/19/12
	Antimony (Sb)	2,600	6.8 mg/Kg-dry	06/18/12	06/19/12
	Barium (Ba)	170	1.4 mg/Kg-dry	06/18/12	06/19/12
	Mercury (Hg)	20	0.27 mg/Kg-dry	06/18/12	06/19/12
	Thallium (Tl)	1.5	1.4 mg/Kg-dry	06/18/12	06/19/12
	Lead (Pb)	2,700	6.8 mg/Kg-dry	06/18/12	06/19/12
Client ID: LVBRN014-SS-02					
Lab ID: MGA12061524-02A	Beryllium (Be)	ND	1.0 mg/Kg-dry	06/18/12	06/19/12
Date Sampled 06/13/12 10:40	Vanadium (V)	21	1.0 mg/Kg-dry	06/18/12	06/19/12
	Chromium (Cr)	14	1.0 mg/Kg-dry	06/18/12	06/19/12
	Cobalt (Co)	20	1.0 mg/Kg-dry	06/18/12	06/19/12
	Nickel (Ni)	25	2.1 mg/Kg-dry	06/18/12	06/19/12
	Copper (Cu)	2,600	2.1 mg/Kg-dry	06/18/12	06/19/12
	Zinc (Zn)	7,100	21 mg/Kg-dry	06/18/12	06/19/12
	Arsenic (As)	400	1.0 mg/Kg-dry	06/18/12	06/19/12
	Selenium (Se)	9.9	1.0 mg/Kg-dry	06/18/12	06/19/12
	Molybdenum (Mo)	5.6	1.0 mg/Kg-dry	06/18/12	06/19/12
	Silver (Ag)	190	1.0 mg/Kg-dry	06/18/12	06/19/12
	Cadmium (Cd)	49	1.0 mg/Kg-dry	06/18/12	06/19/12
	Antimony (Sb)	63	1.0 mg/Kg-dry	06/18/12	06/19/12
	Barium (Ba)	130	1.0 mg/Kg-dry	06/18/12	06/19/12
	Mercury (Hg)	1.2	0.21 mg/Kg-dry	06/18/12	06/19/12
	Thallium (Tl)	ND	1.0 mg/Kg-dry	06/18/12	06/19/12
	Lead (Pb)	5,900	5.2 mg/Kg-dry	06/18/12	06/20/12

LVRRN014/Lackawanna Mill Page 1 of 6

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID: LVBRN014-SS-03					
Lab ID: MGA12061524-03A	Beryllium (Be)	ND	1.1 mg/Kg-dry	06/18/12	06/19/12
Date Sampled 06/13/12 11:05	Vanadium (V)	20	1.1 mg/Kg-dry	06/18/12	06/19/12
	Chromium (Cr)	13	1.1 mg/Kg-dry	06/18/12	06/19/12
	Cobalt (Co)	4.6	1.1 mg/Kg-dry	06/18/12	06/19/12
	Nickel (Ni)	16	2.1 mg/Kg-dry	06/18/12	06/19/12
	Copper (Cu)	69	2.1 mg/Kg-dry	06/18/12	06/19/12
	Zinc (Zn)	1,800	21 mg/Kg-dry	06/18/12	06/19/12
	Arsenic (As)	27	1.1 mg/Kg-dry	06/18/12	06/19/12
	Selenium (Se)	1.2	1.1 mg/Kg-dry	06/18/12	06/19/12
	Molybdenum (Mo)	ND	1.1 mg/Kg-dry	06/18/12	06/19/12
	Silver (Ag)	77	1.1 mg/Kg-dry	06/18/12	06/19/12
	Cadmium (Cd)	13	1.1 mg/Kg-dry	06/18/12	06/19/12
	Antimony (Sb)	64	1.1 mg/Kg-dry	06/18/12	06/19/12
	Barium (Ba)	140	1.1 mg/Kg-dry	06/18/12	06/19/12
	Mercury (Hg)	4.2	0.21 mg/Kg-dry	06/18/12	06/19/12
	Thallium (Tl)	ND	1.1 mg/Kg-dry	06/18/12	06/19/12
	Lead (Pb)	3,600	1.1 mg/Kg-dry	06/18/12	06/19/12
	(-)	-,	2 2 .		
Client ID: LVBRN014-SP-04					
Lab ID: MGA12061524-05A	Beryllium (Be)	ND	1.0 mg/Kg-dry	06/18/12	06/19/12
Date Sampled 06/13/12 11:10	Vanadium (V)	14	1.0 mg/Kg-dry	06/18/12	06/19/12
	Chromium (Cr)	3.1	1.0 mg/Kg-dry	06/18/12	06/19/12
	Cobalt (Co)	4.0	1.0 mg/Kg-dry	06/18/12	06/19/12
	Nickel (Ni)	8.4	2.1 mg/Kg-dry	06/18/12	06/19/12
	Copper (Cu)	1,000	2.1 mg/Kg-dry	06/18/12	06/19/12
	Zinc (Zn)	10,000	100 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	2,700	1.0 mg/Kg-dry	06/18/12	06/19/12
	Selenium (Se)	2.8	1.0 mg/Kg-dry	06/18/12	06/19/12
	Molybdenum (Mo)	12	1.0 mg/Kg-dry	06/18/12	06/19/12
	Silver (Ag)	68	1.0 mg/Kg-dry	06/18/12	06/19/12
	Cadmium (Cd)	74	1.0 mg/Kg-dry	06/18/12	06/19/12
	Antimony (Sb)	1,700	1.0 mg/Kg-dry	06/18/12	06/19/12
	Barium (Ba)	92	1.0 mg/Kg-dry	06/18/12	06/19/12
	Mercury (Hg)	9.3	0.21 mg/Kg-dry	06/18/12	06/19/12
	Thallium (Tl)	2.4	1.0 mg/Kg-dry	06/18/12	06/19/12
	Lead (Pb)	11,000	5.2 mg/Kg-dry	06/18/12	06/20/12
Client ID: LVBRN014-SS-05					
Lab ID: MGA12061524-06A	Damittinum (Da)	ND	1.1 mg/Kg-dry	06/18/12	06/19/12
	•	, ND	1.1 mg/Kg-dry 1.1 mg/Kg-dry	06/18/12	06/19/12
Date Sampled 06/13/12 11:40		35		06/18/12	06/19/12
	Chromium (Cr)	91	1.1 mg/Kg-dry	06/18/12	06/19/12
	Cobalt (Co)	13	1.1 mg/Kg-dry		06/19/12
	Nickel (Ni)	45	2.2 mg/Kg-dry	06/18/12	
	Copper (Cu)	970	2.2 mg/Kg-dry	06/18/12	06/19/12
	Zinc (Zn)	3,700	22 mg/Kg-dry	06/18/12	06/19/12
	Arsenic (As)	140	1.1 mg/Kg-dry	06/18/12	06/19/12
	Selenium (Se)	3.9	1.1 mg/Kg-dry	06/18/12	06/19/12
	Molybdenum (Mo)	4.8	1.1 mg/Kg-dry	06/18/12	06/19/12
	Silver (Ag)	520	5.4 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	46	1.1 mg/Kg-dry	06/18/12	06/19/12
	Antimony (Sb)	660	1.1 mg/Kg-dry	06/18/12	06/19/12
	Barium (Ba)	260	1.1 mg/Kg-dry	06/18/12	06/19/12
	Mercury (Hg)	11	0.22 mg/Kg-dry	06/18/12	06/19/12
	Thallium (Tl)	ND	1.1 mg/Kg-dry	06/18/12	06/19/12
	Lead (Pb)	7,100	5.4 mg/Kg-dry	06/18/12	06/20/12

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID: LVBRN014-SS-06					
Lab ID: MGA12061524-07A	Beryllium (Be)	ND	0.53 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 11:55	Vanadium (V)	9.4	0.53 mg/Kg-dry	06/18/12	06/20/12
*	Chromium (Cr)	8.1	0.53 mg/Kg-dry	06/18/12	06/20/12
	Cobalt (Co)	2.3	0.53 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	7.8	1.1 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	14	1.1 mg/Kg-dry	06/18/12	06/20/12
	Zinc (Zn)	67	11 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	7.8	0.53 mg/Kg-dry	06/18/12	06/20/12
	Selenium (Se)	ND .	0.53 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	ND	0.53 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	9.4	0.53 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	0.58	0.53 mg/Kg-dry	06/18/12	06/20/12
	Antimony (Sb)	11	0.53 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	84	0.53 mg/Kg-dry	06/18/12	06/20/12
	` '		0.11 mg/Kg-dry	06/18/12	06/20/12
	Mercury (Hg)	0.30		06/18/12	06/20/12
	Thallium (Tl)	ND	0.53 mg/Kg-dry	06/18/12	06/20/12
	Lead (Pb)	130	0.53 mg/Kg-dry	00/16/12	00/20/12
Client ID: LVBRN014-SS-07					
Lab ID: MGA12061524-08A	Beryllium (Be)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 12:05	Vanadium (V)	22	1.0 mg/Kg-dry	06/18/12	06/20/12
	Chromium (Cr)	16	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cobalt (Co)	4.3	1.0 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	15	2.1 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	20	2.1 mg/Kg-dry	06/18/12	06/20/12
	Zinc (Zn)	84	21 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	12	1.0 mg/Kg-dry	06/18/12	06/20/12
	Selenium (Se)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	7.1	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Antimony (Sb)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	190	1.0 mg/Kg-dry	06/18/12	06/20/12
	Mercury (Hg)	0.21	0.21 mg/Kg-dry	06/18/12	06/20/12
	Thallium (TI)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Lead (Pb)	47	1.0 mg/Kg-dry	06/18/12	06/20/12
	Ecata (1 b)	47	1.0 mg/kg-ury	00/10/12	00/20/12
Client ID: LVBRN014-SS-08					
Lab ID: MGA12061524-09A	•	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 12:20	Vanadium (V)	24	1.0 mg/Kg-dry	06/18/12	06/20/12
	Chromium (Cr)	20	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cobalt (Co)	4.9	1.0 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	17	2.0 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	52	2.0 mg/Kg-dry	06/18/12	06/20/12
	Zinc (Zn)	220	20 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	18	1.0 mg/Kg-dry	06/18/12	06/20/12
	Selenium (Se)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	30	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	1.8	1.0 mg/Kg-dry	06/18/12	06/20/12
	Antimony (Sb)	13	1.0 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	160	1.0 mg/Kg-dry	06/18/12	06/20/12
	Mercury (Hg)	0.53	0.20 mg/Kg-dry	06/18/12	06/20/12
	Thallium (TI)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Lead (Pb)	140	1.0 mg/Kg-dry	06/18/12	06/20/12
	()	***	 	,	

LVRRN014/Lackawanna Mill Page 3 of 6

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID: LVBRN014-SS-09					
Lab ID: MGA12061524-10A	Parellium (Pa)	ND .	0.52 mg/Kg-dry	06/18/12	06/20/12
	Vanadium (V)	18	0.52 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 12:40	Chromium (Cr)	12	0.52 mg/Kg-dry	06/18/12	06/20/12
		3.5	0.52 mg/Kg-dry	06/18/12	06/20/12
<u>.</u>	Cobalt (Co)	13	1.0 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	22	1.0 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	120	10 mg/Kg-dry	06/18/12	06/20/12
	Zinc (Zn)	120	0.52 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As) Selenium (Se)	0.58	0.52 mg/Kg-dry	06/18/12	06/20/12
	` '	0.63	0.52 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	8.4	0.52 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	0.79	0.52 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	3.8	0.52 mg/Kg-dry	06/18/12	06/20/12
	Antimony (Sb)		0.52 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	130	0.10 mg/Kg-dry	06/18/12	06/20/12
	Mercury (Hg)	0.61	0.52 mg/Kg-dry	06/18/12	06/20/12
	Thallium (Tl)	ND		06/18/12	06/20/12
	Lead (Pb)	63	0.52 mg/Kg-dry	00/18/12	00/20/12
Client ID: LVBRN014-SP-10					
Lab ID: MGA12061524-11A	Beryllium (Be)	1.0	0.56 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 12:50	Vanadium (V)	36	0.56 mg/Kg-dry	06/18/12	06/20/12
	Chromium (Cr)	52	0.56 mg/Kg-dry	06/18/12	06/20/12
	Cobalt (Co)	24	0.56 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	36	1.1 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	400	1.1 mg/Kg-dry	06/18/12	06/20/12
	Zinc (Zn)	4,000	11 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	83	0.56 mg/Kg-dry	06/18/12	06/20/12
	Selenium (Se)	12	0.56 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	24	0.56 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	25	0.56 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	53	0.56 mg/Kg-dry	06/18/12	06/20/12
	Antimony (Sb)	30	0.56 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	57	0.56 mg/Kg-dry	06/18/12	06/20/12
	Mercury (Hg)	0.98	0.11 mg/Kg-dry	06/18/12	06/20/12
	Thallium (Tl)	ND	0.56 mg/Kg-dry	06/18/12	06/20/12
	Lead (Pb)	1,500	0.56 mg/Kg-dry	06/18/12	06/20/12
Client ID: LVBRN014-SS-11					
Lab ID: MGA12061524-12A	Beryllium (Be)	ND	1.1 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 14:55	Vanadium (V)	18	1.1 mg/Kg-dry	06/18/12	06/20/12
	Chromium (Cr)	7.9	1.1 mg/Kg-dry	06/18/12	06/20/12
	Cobalt (Co)	3.0	1.1 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	9.6	2.2 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	580	2.2 mg/Kg-dry	06/18/12	06/20/12
	Zinc (Zn)	13,000	110 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	3,200	1.1 mg/Kg-dry	06/18/12	06/20/12
v.	Selenium (Se)	3.9	1.1 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	18	1.1 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	41	1.1 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	110	1.1 mg/Kg-dry	06/18/12	06/20/12
	Antimony (Sb)	2,000	5.5 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	330	1.1 mg/Kg-dry	06/18/12	06/20/12
	Mercury (Hg)	11	0.22 mg/Kg-dry	06/18/12	06/20/12
	Thallium (Tl)	2.2	1.1 mg/Kg-dry	06/18/12	06/20/12
	Lead (Pb)	18,000	5.5 mg/Kg-dry	06/18/12	06/20/12
		•	- ·		

LVRRN014/Lackawanna Mill Page 4 of 6

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID: LVBRN014-SS-12					
Lab ID: MGA12061524-13A	Bervllium (Be)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 15:10	Vanadium (V)	10	1.0 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 00/13/12 13:10	Chromium (Cr)	8.8	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cobalt (Co)	3.7	1.0 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	13	2.0 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	310	2.0 mg/Kg-dry	06/18/12	06/20/12
	Zinc (Zn)	7,300	20 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	900	1.0 mg/Kg-dry	06/18/12	06/20/12
	Selenium (Se)	2.2	1.0 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	5.1	1.0 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	21	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	40	1.0 mg/Kg-dry	06/18/12	06/20/12
	Antimony (Sb)	690	1.0 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	1,500	1.0 mg/Kg-dry	06/18/12	06/20/12
	Mercury (Hg)	4.8	0.20 mg/Kg-dry	06/18/12	06/20/12
	Thallium (Tl)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Lead (Pb)	6,000	5.1 mg/Kg-dry	06/18/12	06/20/12
Oliver ID T LUNDNIGH 4 CG 44	,	,			
Client ID: LVBRN014-SS-13	D 47 (D)		1.0 (77. 1	06/10/10	06/00/10
Lab ID: MGA12061524-14A	• • •	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 15:25	Vanadium (V)	22	1.0 mg/Kg-dry	06/18/12	06/20/12
	Chromium (Cr)	16	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cobalt (Co)	5.6	1.0 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	18	2.0 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	150	2.0 mg/Kg-dry	. 06/18/12	06/20/12
	Zinc (Zn)	1,100	20 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	78	1.0 mg/Kg-dry	06/18/12	06/20/12
	Selenium (Se)	2.4	1.0 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	18	1.0 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	29	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	10	1.0 mg/Kg-dry	06/18/12	06/20/12 06/20/12
	Antimony (Sb)	49	1.0 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	220	1.0 mg/Kg-dry	06/18/12	
	Mercury (Hg)	3.6	0.20 mg/Kg-dry	06/18/12	06/20/12 06/20/12
	Thallium (Tl)	ND	1.0 mg/Kg-dry	06/18/12 06/18/12	06/20/12
	Lead (Pb)	840	1.0 mg/Kg-dry	00/18/12	00/20/12
Client ID: LVBRN014-SS-14					
Lab ID: MGA12061524-15A		ND	1.0 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 15:35	Vanadium (V)	26	1.0 mg/Kg-dry	06/18/12	06/20/12
	Chromium (Cr)	22	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cobalt (Co)	6.5	1.0 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	17	2.0 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	200	2.0 mg/Kg-dry	06/18/12	06/20/12
	Zinc (Zn)	1,200	20 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	61 ·	1.0 mg/Kg-dry	06/18/12	06/20/12
*	Selenium (Se)	3.8	1.0 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	6.7	1.0 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	21	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	13	1.0 mg/Kg-dry	06/18/12	06/20/12
	Antimony (Sb)	51	1.0 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	190	1.0 mg/Kg-dry	06/18/12	06/20/12
	Mercury (Hg)	1.1	0.20 mg/Kg-dry	06/18/12	06/20/12
	Thallium (Tl)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Lead (Pb)	960	1.0 mg/Kg-dry	06/18/12	06/20/12

LVRRN014/Lackawanna Mill Page 5 of 6

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID: LVBRN014-SS-15					•
Lab ID: MGA12061524-16A	Beryllium (Be)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 16:10	Vanadium (V)	21	1.0 mg/Kg-dry	06/18/12	06/20/12
	Chromium (Cr)	16	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cobalt (Co)	5.2	1.0 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	17	2.0 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	35	2.0 mg/Kg-dry	06/18/12	06/20/12
	Zinc (Zn)	200	20 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	15	1.0 mg/Kg-dry	06/18/12	06/20/12
	Selenium (Se)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	16	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	1.7	1.0 mg/Kg-dry	06/18/12	06/20/12
	Antimony (Sb)	9.7	1.0 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	170	1.0 mg/Kg-dry	06/18/12	06/20/12
	Mercury (Hg)	0.45	0.20 mg/Kg-dry	06/18/12	06/20/12
	Thallium (Tl)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Lead (Pb)	160	1.0 mg/Kg-dry	06/18/12	06/20/12
Client ID: LVBRN014-SS-16					
Lab ID: MGA12061524-17A	Beryllium (Be)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
Date Sampled 06/13/12 16:20	Vanadium (V)	25	1.0 mg/Kg-dry	06/18/12	06/20/12
	Chromium (Cr)	20	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cobalt (Co)	5.9	1.0 mg/Kg-dry	06/18/12	06/20/12
	Nickel (Ni)	20	2.1 mg/Kg-dry	06/18/12	06/20/12
	Copper (Cu)	31	2.1 mg/Kg-dry	06/18/12	06/20/12
	Zinc (Zn)	250	21 mg/Kg-dry	06/18/12	06/20/12
	Arsenic (As)	15	1.0 mg/Kg-dry	06/18/12	06/20/12
	Selenium (Se)	1.2	1.0 mg/Kg-dry	06/18/12	06/20/12
	Molybdenum (Mo)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Silver (Ag)	24	1.0 mg/Kg-dry	06/18/12	06/20/12
	Cadmium (Cd)	1.4	1.0 mg/Kg-dry	06/18/12	06/20/12
	Antimony (Sb)	8.9	1.0 mg/Kg-dry	06/18/12	06/20/12
	Barium (Ba)	210	1.0 mg/Kg-dry	06/18/12	06/20/12
	Mercury (Hg)	0.47	0.21 mg/Kg-dry	06/18/12	06/20/12
	Thallium (Tl)	ND	1.0 mg/Kg-dry	06/18/12	06/20/12
	Lead (Pb)	110	1.0 mg/Kg-dry	06/18/12	06/20/12

Concentrations and reporting limits are based on dry weights.

ND = Not Detected

Roger Scholl Kandy Saulan Walter Airchner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com
Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn:

Brett Bottenberg

Phone: (702) 260-4961

Fax:

(702) 260-4968

Date Received: 06/15/12

Job:

LVRRN014/Lackawanna Mill

Percent Moisture **ASTM D2216**

	ASTMI DZZIO			
Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: LVBRN014-SP-01 Lab ID: MGA12061524-01A Percent Moisture Date Sampled 06/13/12 10:00	27	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-02 Lab ID: MGA12061524-02A Percent Moisture Date Sampled 06/13/12 10:40	3.2	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-03 Lab ID: MGA12061524-03A Percent Moisture Date Sampled 06/13/12 11:05	5.3	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SP-04 Lab ID: MGA12061524-05A Percent Moisture Date Sampled 06/13/12 11:10	3.3	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-05 Lab ID: MGA12061524-06A Percent Moisture Date Sampled 06/13/12 11:40	7.2	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-06 Lab ID: MGA12061524-07A Percent Moisture Date Sampled 06/13/12 11:55	5.3	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-07 Lab ID: MGA12061524-08A Percent Moisture Date Sampled 06/13/12 12:05	3.0	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-08 Lab ID: MGA12061524-09A Percent Moisture Date Sampled 06/13/12 12:20	1.7	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-09 Lab ID: MGA12061524-10A Percent Moisture Date Sampled 06/13/12 12:40	3.4	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SP-10 Lab ID: MGA12061524-11A Percent Moisture Date Sampled 06/13/12 12:50	10	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-11 Lab ID: MGA12061524-12A Percent Moisture Date Sampled 06/13/12 14:55	8.4	0.10 %	06/21/12	06/21/12

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID: LVBRN014-SS-12 Lab ID: MGA12061524-13A Percent Moisture Date Sampled 06/13/12 15:10	1.7	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-13 Lab ID: MGA12061524-14A Percent Moisture Date Sampled 06/13/12 15:25	2.1	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-14 Lab ID: MGA12061524-15A Percent Moisture Date Sampled 06/13/12 15:35	1.9	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-15 Lab ID: MGA12061524-16A Percent Moisture Date Sampled 06/13/12 16:10	1.8	0.10 %	06/21/12	06/21/12
Client ID: LVBRN014-SS-16 Lab ID: MGA12061524-17A Percent Moisture Date Sampled 06/13/12 16:20	3.0	0.10 %	06/21/12	06/21/12

Roger Scholl

Kandy Saulur

Walter Hirihan

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

6/21/12 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118 Attn: Brett Bottenberg

Phone: (702) 260-4961 Fax: (702) 260-4968

Date Received: 06/15/12

Job:

LVRRN014/Lackawanna Mill

pH (Soil) EPA Method SW9045D

Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: LVBRN014-SP-01				
Lab ID: MGA12061524-01A pH	12	1.7 pH Units	06/20/12 10:36	
Date Sampled 06/13/12 10:00 pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 09:47
Client ID: LVBRN014-SS-02				
Lab ID: MGA12061524-02A pH	7.7	1.7 pH Units	06/20/12 10:36	
Date Sampled 06/13/12 10:40 pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 09:51
Client ID: LVBRN014-SS-03				
Lab ID: MGA12061524-03A pH	8.8	1.7 pH Units		06/21/12 09:54
Date Sampled 06/13/12 11:05 pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 09:54
Client ID: LVBRN014-SP-04				
Lab ID: MGA12061524-05A pH	8.8	1.7 pH Units		06/21/12 09:57
Date Sampled 06/13/12 11:10 pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 09:57
Client ID: LVBRN014-SS-05				
Lab ID: MGA12061524-06A pH	9.5	1.7 pH Units		06/21/12 09:59
Date Sampled 06/13/12 11:40 pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 09:59
Client ID: LVBRN014-SS-06				
Lab ID: MGA12061524-07A pH	8.8	1.7 pH Units		06/21/12 10:03
Date Sampled 06/13/12 11:55 pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 10:03
Client ID: LVBRN014-SS-07				
Lab ID: MGA12061524-08A pH	8.5	1.7 pH Units		06/21/12 10:07
Date Sampled 06/13/12 12:05 pH - Temperature	21	1:0 °C	06/20/12 10:36	06/21/12 10:07
Client ID: LVBRN014-SS-08				
Lab ID: MGA12061524-09A pH	8.1	1.7 pH Units	06/20/12 10:36	
Date Sampled 06/13/12 12:20 pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 10:10
Client ID: LVBRN014-SS-09				
Lab ID: MGA12061524-10A pH	8.6	1.7 pH Units		06/21/12 10:13
Date Sampled 06/13/12 12:40 pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 10:13
Client ID: LVBRN014-SP-10				1
Lab ID: MGA12061524-11A pH	7.8	1.7 pH Units		06/21/12 10:24
Date Sampled 06/13/12 12:50 pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 10:24
Client ID: LVBRN014-SS-11				
Lab ID: MGA12061524-12A pH	8.5	1.7 pH Units		06/21/12 10:32
Date Sampled 06/13/12 14:55 pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 10:32

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID: LVBRN014-SS-12					
Lab ID: MGA12061524-13A	pH	8.8	1.7 pH Units	06/20/12 10:36	06/21/12 10:35
Date Sampled 06/13/12 15:10	pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 10:35
Client ID: LVBRN014-SS-13			•		
Lab ID: MGA12061524-14A	pH	8.2	1.7 pH Units	06/20/12 10:36	06/21/12 10:38
Date Sampled 06/13/12 15:25	pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 10:38
Client ID: LVBRN014-SS-14					
Lab ID: MGA12061524-15A	pH	8.3	1.7 pH Units	06/20/12 10:36	06/21/12 10:41
Date Sampled 06/13/12 15:35	pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 10:41
Client ID: LVBRN014-SS-15					
Lab ID: MGA12061524-16A	pH	7.8	1.7 pH Units	06/20/12 10:36	06/21/12 10:42
Date Sampled 06/13/12 16:10	pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 10:42
Client ID: LVBRN014-SS-16					
Lab ID: MGA12061524-17A	pH	8.0	1.7 pH Units	06/20/12 10:36	06/21/12 10:45
Date Sampled 06/13/12 16:20	pH - Temperature	21	1.0 °C	06/20/12 10:36	06/21/12 10:45

Roger Scholl

Kandy Daulmer

Walter Hinkows

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

6/24/12 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn: Phone:

Brett Bottenberg (702) 260-4961

(702) 260-4968

LVRRN014/Lackawanna Mill

Sampled: 06/13/12 10:00 Alpha Analytical Number: MGA12061524-01A Client I.D. Number: LVBRN014-SP-01

Received: 06/15/12 Extracted: 06/18/12 12:27

Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND	25 μg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 μg/Kg	
7	Phenanthrene	60	25 μg/Kg	
8	Anthracene	ND	25 μg/Kg	
9	Fluoranthene	64	25 μg/Kg	
10	Pyrene	55	25 μg/Kg	
11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	40	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
. 15	Indeno(1,2,3-cd)pyrene	ND	25 μg/Kg	
16	Dibenz(a,h)anthracene	ND	25 μg/Kg	
17	Benzo(g,h,i)perylene	ND	25 μg/Kg	
18	Surr: 2-Fluorobiphenyl	110	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	124	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Koger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

 $Sacramento, CA \bullet (916) \ 366 - 9089 \ / \ Las \ Vegas, \ NV \bullet (702) \ 281 - 4848 \ \ \cdot \ Carson, \ CA \bullet (714) \ 386 - 2901 \ / \ \ info(\alpha) \ alpha-analytical.com$ Alpha Analytical. Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-02A

Client I.D. Number: LVBRN014-SS-02

Attn: Brett Bottenberg Phone: (702) 260-4961 Fax: (702) 260-4968

Sampled: 06/13/12 10:40

Received: 06/15/12

Extracted: 06/18/12 12:27 Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3 ,	1-Methylnaphthalene	ND	25 μg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 µg/Kg	
6	Fluorene	ND	25 µg/Kg	
7	Phenanthrene	ND	25 µg/Kg	
8	Anthracene	ND	25 µg/Kg	
9	Fluoranthene	ND	25 µg/Kg	
10	Pyrene	ND	25 µg/Kg	
11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	ND	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 µg/Kg	
14	Benzo(a)pyrene	ND	25 µg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 µg/Kg	
16	Dibenz(a,h)anthracene	ND	25 µg/Kg	
17	Benzo(g,h,i)perylene	ND	25 µg/Kg	
18	Surr: 2-Fluorobiphenyl	114	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	128	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger Scholl

Kandy Sanlmer

Walter Arribour

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 | Carson, CA • (714) 386-2901 / info@alpha-analytical.com
Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Report Date

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn:

Brett Bottenberg Phone: (702) 260-4961

Fax:

(702) 260-4968

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-03.A

Client I.D. Number: LVBRN014-SS-03

Sampled: 06/13/12 11:05

Received: 06/15/12

Extracted: 06/18/12 12:27

Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND	25 μg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 µg/Kg	
7	Phenanthrene	ND	25 μg/Kg	
8	Anthracene	ND	25 μg/Kg	
9	Fluoranthene	ND	25 µg/Kg	
10	Pyrene	ND	25 μg/Kg	
11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	ND	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 μg/Kg	
16	Dibenz(a,h)anthracene	ND	25 μg/Kg	
17	Benzo(g,h,i)perylene	. ND	25 μg/Kg	
18	Surr: 2-Fluorobiphenyl	99	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	110	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Koger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Report Date

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Job:

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-05A

Client I.D. Number: LVBRN014-SP-04

Attn: Brett Bottenberg Phone: (702) 260-4961

Fax: (702) 260-4968

Sampled: 06/13/12 11:10

Received: 06/15/12

Extracted: 06/18/12 12:27

Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 µg/Kg	
3	1-Methylnaphthalene	ND	25 µg/Kg	
4	Acenaphthylene	ND	25 µg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 µg/Kg	
7	Phenanthrene	89	25 µg/Kg	
8	Anthracene	ND	25 µg/Kg	
9	Fluoranthene	160	25 µg/Kg	
10	Pyrene	150	25 µg/Kg	
11	Benzo(a)anthracene	67	25 µg/Kg	
12	Chrysene	70	25 µg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	84	50 µg/Kg	
14	Benzo(a)pyrene	62	25 µg/Kg	
15	Indeno(1,2,3-cd)pyrene	36	²⁵ µg/Kg	
16	Dibenz(a,h)anthracene	ND	25 µg/Kg	
17	Benzo(g,h,i)perylene	26	25 µg/Kg	
18	Surr: 2-Fluorobiphenyl	98	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	′ . 110	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl Kandy Saulur

Dalter Hinchman Quality Assurance Office

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com
Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

6/21/12

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn:

Brett Bottenberg Phone: (702) 260-4961

(702) 260-4968

LVRRN014/Lackawanna Mill

Client I.D. Number: LVBRN014-SS-05

Alpha Analytical Number: MGA12061524-06A

Sampled: 06/13/12 11:40

Received: 06/15/12

Extracted: 06/18/12 12:27

Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

 	Compound	Concentration	Reporting Limit
1	Naphthalene	ND	25 μg/Kg
2	2-Methylnaphthalene	ND .	25 μg/Kg
3	1-Methylnaphthalene	ND	25 μg/Kg
4	Acenaphthylene	ND	25 μg/Kg
5	Acenaphthene	ND	25 μg/Kg
6	Fluorene	ND	25 μg/Kg
7	Phenanthrene	ND	25 µg/Kg
8	Anthracene	ND	25 μg/Kg
9	Fluoranthene	28	25 μg/Kg
10	Pyrene	35	25 μg/Kg
11	Benzo(a)anthracene	ND	25 μg/Kg
12	Chrysene	ND	25 μg/Kg
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg
14	Benzo(a)pyrene	ND	25 μg/Kg
15	Indeno(1,2,3-cd)pyrene	ND	25 µg/Kg
16	Dibenz(a,h)anthracene	ND	25 μg/Kg
17	Benzo(g,h,i)perylene	ND	25 μg/Kg
18	Surr: 2-Fluorobiphenyl	108	(54-130) %REC
19	Surr: 4-Terphenyl-d14	103	(24-145) %REC
		I .	1

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Report Date

Alpha Analytical. Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn:

Brett Bottenberg Phone: (702) 260-4961

Fax:

(702) 260-4968

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-07A

Sampled: 06/13/12 11:55

Client I.D. Number: LVBRN014-SS-06

Received: 06/15/12

Extracted: 06/18/12 12:27

Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND	25 μg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 μg/Kg	
7	Phenanthrene	ND	25 μg/Kg	
8	Anthracene	ND	25 μg/Kg	
9	Fluoranthene	ND ·	25 μg/Kg	
10	Pyrene	ND	25 μg/Kg	
11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	ND	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 μg/Kg	
16	Dibenz(a,h)anthracene	ND	25 μg/Kg	
17	Benzo(g,h,i)perylene	ND	25 μg/Kg	
18	Surr: 2-Fluorobiphenyl	101	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	92	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016. Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn:

Brett Bottenberg Phone: (702) 260-4961

Fax:

(702) 260-4968

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-08A

Client I.D. Number: LVBRN014-SS-07

Sampled: 06/13/12 12:05

Received: 06/15/12

Extracted: 06/18/12 12:27 Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 µg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND	25 μg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 μg/Kg	
7	Phenanthrene	ND	25 μg/Kg	
8	Anthracene	ND	25 μg/Kg	
9	Fluoranthene	ND	25 μg/Kg	
10	Pyrene	ND	25 μg/Kg	
11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	ND	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 μg/Kg	
16	Dibenz(a,h)anthracene	ND	25 μg/Kg	
17	Benzo(g,h,i)perylene	ND	25 μg/Kg	
18	Surr: 2-Fluorobiphenyl	93	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	102	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Report Date

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical. Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn:

Brett Bottenberg Phone: (702) 260-4961

Fax:

(702) 260-4968

Job:

LVRRN014/Lackawanna Mill

Client I.D. Number: LVBRN014-SS-08

Alpha Analytical Number: MGA12061524-09A

Sampled: 06/13/12 12:20

Received: 06/15/12

Extracted: 06/18/12 12:27

Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND	25 μg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 μg/Kg	
7	Phenanthrene	ND	25 µg/Kg	
8	Anthracene	ND	25 µg/Kg	
9	Fluoranthene	ND	25 μg/Kg	
10	Pyrene	ND	25 μg/Kg	
11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	ND	25 µg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 μg/Kg	
16	Dibenz(a,h)anthracene	ND	25 µg/Kg	
17	Benzo(g,h,i)perylene	ND	25 μg/Kg	
18	Surr: 2-Fluorobiphenyl	93	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	90	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Report Date

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn:

Brett Bottenberg Phone: (702) 260-4961

Fax:

(702) 260-4968

LVRRN014/Lackawanna Mill

Sampled: 06/13/12 12:40

Alpha Analytical Number: MGA12061524-10A Client I.D. Number: LVBRN014-SS-09

Received: 06/15/12

Extracted: 06/18/12 12:27 Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND	25 µg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 μg/Kg	
7	Phenanthrene	ND	25 μg/Kg	
8	Anthracene	ND	25 μg/Kg	
9	Fluoranthene	ND	25 μg/Kg	
10	Pyrene	ND	25 μg/Kg	
11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	ND	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 μg/Kg	
16	Dibenz(a,h)anthracene	ND	25 μg/Kg	
17	Benzo(g,h,i)perylene	ND	25 μg/Kg	
18	Surr: 2-Fluorobiphenyl	98	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	94	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical. Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016. Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Job:

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-11A

Client I.D. Number: LVBRN014-SP-10

Attn:

Brett Bottenberg Phone: (702) 260-4961

Fax:

(702) 260-4968

Sampled: 06/13/12 12:50

Received: 06/15/12

Extracted: 06/18/12 12:27

Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	. 25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND	25 µg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 μg/Kg	
7	Phenanthrene	ND	25 μg/Kg	
8	Anthracene	ND	25 µg/Kg	
9	Fluoranthene	ND	25 µg/Kg	
10	Pyrene	ND	25 µg/Kg	
11	Benzo(a)anthracene	ND ND	25 µg/Kg	
12	Chrysene	· ND	25 µg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 µg/Kg	
16	Dibenz(a,h)anthracene	ND	25 µg/Kg	
17	Benzo(g,h,i)perylene	ND	25 µg/Kg	
18	Surr: 2-Fluorobiphenyl	105	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	117	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer $Sacramento.\ CA \bullet (916)\ 366-9089 \ /\ Las\ Vegas,\ NV \bullet (702)\ 281-4848\ \ /\ Carson,\ CA \bullet (714)\ 386-2901 \ /\ info@alpha-analytical.com$

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn:

Brett Bottenberg Phone: (702) 260-4961

Fax:

(702) 260-4968

Job: LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-12A Client I.D. Number: LVBRN014-SS-11

Sampled: 06/13/12 14:55

Received: 06/15/12

Extracted: 06/18/12 12:27 Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	·
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 µg/Kg	
3	1-Methylnaphthalene	ND	25 μg/Kg	
. 4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 μg/Kg	
7	Phenanthrene	ND	25 μg/Kg	
8	Anthracene	ND ·	25 μg/Kg	
9	Fluoranthene	ND	25 μg/Kg	
10	Pyrene	ND	25 μg/Kg	
. 11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	ND	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 µg/Kg	
16	Dibenz(a,h)anthracene	ND	25 μg/Kg	
17	Benzo(g,h,i)perylene	ND	25 µg/Kg	
18	Surr: 2-Fluorobiphenyl	106	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	114	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Koger Scholl

6/21/12

Report Date

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical. Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Alpha Analytical. Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

LVRRN014/Lackawanna Mill

Attn:

Brett Bottenberg (702) 260-4961

Phone: Fax:

(702) 260-4968

Alpha Analytical Number: MGA12061524-13A

Client I.D. Number: LVBRN014-SS-12

Sampled: 06/13/12 15:10

Received: 06/15/12

Extracted: 06/18/12 12:27

Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND	25 μg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 μg/Kg	
7	Phenanthrene	ND	25 μg/Kg	
8	Anthracene	ND	25 µg/Kg	
9	Fluoranthene	ND	25 μg/Kg	
10	Pyrene	ND	25 µg/Kg	
11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	ND	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	i e	
. 15	Indeno(1,2,3-cd)pyrene	ND		
16	Dibenz(a,h)anthracene	ND	25 µg/Kg	
17	Benzo(g,h,i)perylene	ND	25 µg/Kg	
18	Surr: 2-Fluorobiphenyl	99	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	101	(24-145) %REC	
15 16 17 18	Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Surr: 2-Fluorobiphenyl	ND ND ND 99	25 μg/Kg (54-130) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Report Date

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn: Phone:

Brett Bottenberg (702) 260-4961

Fax:

(702) 260-4968

LVRRN014/Lackawanna Mill

Client I.D. Number: LVBRN014-SS-13

Alpha Analytical Number: MGA12061524-14A

Sampled: 06/13/12 15:25

Received: 06/15/12

Extracted: 06/18/12 12:27

Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND .	25 μg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 μg/Kg	
7	Phenanthrene	ND	25 µg/Kg	
8	Anthracene	ND	25 μg/Kg	
9	Fluoranthene	ND	25 µg/Kg	
10	Pyrene	ND	25 μg/Kg	
11	Benzo(a)anthracene	ND	25 µg/Kg	
12	Chrysene	ND	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 μg/Kg	
16	Dibenz(a,h)anthracene	ND	25 μg/Kg	
17	Benzo(g,h,i)perylene	ND	25 µg/Kg	
18	Surr: 2-Fluorobiphenyl	95	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	81	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info(@alpha-analytical.com

Report Date

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn:

Brett Bottenberg Phone: (702) 260-4961

Fax:

(702) 260-4968

Job: LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-15A Client I.D. Number: LVBRN014-SS-14

Sampled: 06/13/12 15:35

Received: 06/15/12

Extracted: 06/18/12 12:27 Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND	25 μg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 μg/Kg	
6	Fluorene	ND	25 μg/Kg	
7	Phenanthrene	ND	25 μg/Kg	
8	Anthracene	ND	25 μg/Kg	
9	Fluoranthene	ND	25 μg/Kg	
10	Pyrene	ND	25 μg/Kg	
11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	ND	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 μg/Kg	
16	Dibenz(a,h)anthracene	ND	25 μg/Kg	
17	Benzo(g,h,i)perylene	ND	25 μg/Kg	
18	Surr: 2-Fluorobiphenyl	103	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	117	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Report Date

Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical. Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn: Phone:

Brett Bottenberg (702) 260-4961

Fax:

(702) 260-4968

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-16A Client I.D. Number: LVBRN014-SS-15

Sampled: 06/13/12 16:10

Received: 06/15/12 Extracted: 06/18/12 12:27

Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 µg/Kg	
3	1-Methylnaphthalene	ND	25 µg/Kg	
4	Acenaphthylene	ND	25 µg/Kg	
5	Acenaphthene	ND	25 µg/Kg	
6	Fluorene	ND	25 µg/Kg	
7	Phenanthrene	ND	25 µg/Kg	
8	Anthracene	ND	25 µg/Kg	
9	Fluoranthene	ND	25 µg/Kg	
10	Pyrene	ND	25 µg/Kg	
11	Benzo(a)anthracene	ND	25 µg/Kg	
12	Chrysene	ND	25 µg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	. ND	50 µg/Kg	
14	Benzo(a)pyrene	ND	25 µg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 µg/Kg	
16	Dibenz(a,h)anthracene	ND	25 µg/Kg	
17	Benzo(g,h,i)perylene	ND	25 µg/Kg	
18	Surr: 2-Fluorobiphenyl	98	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	129	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Koger Scholl

Report Date

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info(a)alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Attn: Phone: Brett Bottenberg (702) 260-4961

Fax:

(702) 260-4968

Job:

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-17A

Client I.D. Number: LVBRN014-SS-16

Sampled: 06/13/12 16:20

Received: 06/15/12

Extracted: 06/18/12 12:27 Analyzed: 06/20/12

Semivolatile Organics by GC/MS - SIM EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	25 μg/Kg	
2	2-Methylnaphthalene	ND	25 μg/Kg	
3	1-Methylnaphthalene	ND	25 μg/Kg	
4	Acenaphthylene	ND	25 μg/Kg	
5	Acenaphthene	ND	25 µg/Kg	
6	Fluorene	ND	25 µg/Kg	
7	Phenanthrene	ND	25 μg/Kg	
8	Anthracene	ND	25 μg/Kg	
9	Fluoranthene	ND	25 µg/Kg	
10	Pyrene	ND	25 μg/Kg	
11	Benzo(a)anthracene	ND	25 μg/Kg	
12	Chrysene	ND	25 μg/Kg	
13	Benzo(b&k)fluoranthene, isomeric pair	ND	50 μg/Kg	
14	Benzo(a)pyrene	ND	25 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	25 μg/Kg	
16	Dibenz(a,h)anthracene	ND	25 μg/Kg	
17	Benzo(g,h,i)perylene	ND	25 μg/Kg	
18	Surr: 2-Fluorobiphenyl	97	(54-130) %REC	
19	Surr: 4-Terphenyl-d14	102	(24-145) %REC	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Job:

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-03A

Client I.D. Number: LVBRN014-SS-03

Attn:

Brett Bottenberg

Phone: (702) 260-4961 (702) 260-4968

Sampled: 06/13/12 11:05

Received: 06/15/12

Extracted: 06/19/12 13:54

Analyzed: 06/20/12

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
***************************************	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	80 µg/Kg	26	Ethylbenzene	ND	20 μg/Kg
2	Vinyl chloride	ND	20 μg/Kg	27	m,p-Xylene	ND	20 μg/Kg
3	Chloroethane	ND	20 μg/Kg	28	Bromoform	ND	20 μg/Kg
4	Bromomethane	ND	80 μg/Kg	29	o-Xylene	ND	20 µg/Kg
5	Trichlorofluoromethane	ND	20 μg/Kg	30	1,1,2,2-Tetrachloroethane	ND	20 μg/Kg
6	1,1-Dichloroethene	ND	20 μg/Kg	31	1,3-Dichlorobenzene	ND	20 μg/Kg
7	Dichloromethane	ND	80 μg/Kg	32	1,4-Dichlorobenzene	ND	20 μg/Kg
8	trans-1,2-Dichloroethene	ND	20 μg/Kg	33	1,2-Dichlorobenzene	ND	20 μg/Kg
9	1,1-Dichloroethane	ND	20 μg/Kg	34	Surr: 1,2-Dichloroethane-d4	83	(70-130) %REC
10	cis-1,2-Dichloroethene	ND	20 μg/Kg	35	Surr: Toluene-d8	112	(70-130) %REC
11	Chloroform	ND	20 μg/Kg	36	Surr: 4-Bromofluorobenzene	90	(70-130) %REC
12	1,2-Dichloroethane	ND	20 μg/Kg			1	
13	1,1,1-Trichloroethane	ND	20 μg/Kg				
14	Carbon tetrachloride	, ND	20 μg/Kg				
15	Benzene	ND	20 μg/Kg				
16	1,2-Dichloropropane	ND	20 μg/ K g				
17	Trichloroethene	ND	20 μg/Kg				
18	Bromodichloromethane	ND	20 μg/Kg				
19	cis-1,3-Dichloropropene	ND	20 μg/Kg				
20	trans-1,3-Dichloropropene	ND.	20 μg/Kg				
21	1,1,2-Trichloroethane	ND	20 μg/Kg				
22	Toluene	ND	20 µg/Kg				
23	Dibromochloromethane	ND	20 µg/Kg				
24	Tetrachloroethene	ND	20 µg/Kg				
25	Chlorobenzene	ND	20 μg/Kg				

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way. $Alpha\ Analytical, Inc.\ currently\ holds\ appropriate\ and\ available\ NDEP\ certifications\ for\ the\ data\ reported\ -\ certification\ \#NV00016.$ **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-04A

Client I.D. Number: EQUIP. BLANK

Attn:

Brett Bottenberg Phone: (702) 260-4961

Fax:

(702) 260-4968

Sampled: 06/13/12 11:20

Received: 06/15/12

Extracted: 06/20/12 Analyzed: 06/20/12

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
_	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	2.0 μg/L	26	Ethylbenzene	ND	1.0 µg/L
2	Vinyl chloride	ND	1.0 µg/L	27	m,p-Xylene	ND	1.0 μg/L
3	Chloroethane	ND	1.0 μg/L	28	Bromoform	ND	1.0 μg/L
4	Bromomethane	ND	2.0 μg/L	29	o-Xylene	ND	1.0 μg/L
5	Trichlorofluoromethane	ND	1.0 μg/L	30	1,1,2,2-Tetrachloroethane	ND	1.0 μg/L
6	1,1-Dichloroethene	ND	1.0 μg/L	31	1,3-Dichlorobenzene	ND	1.0 μg/L
7	Dichloromethane	ND	2.0 µg/L	32	1,4-Dichlorobenzene	ND	1.0 μg/L
8	trans-1,2-Dichloroethene	ND	1.0 μg/L	33	1,2-Dichlorobenzene	ND	1.0 µg/L
9	1,1-Dichloroethane	ND	1.0 μg/L	34	Surr: 1,2-Dichloroethane-d4	128	(70-130) %REC
10	cis-1,2-Dichloroethene	ND	1.0 μg/L	35	Surr: Toluene-d8	95	(70-130) %REC
11	Chloroform	ND	1.0 µg/L	36	Surr: 4-Bromofluorobenzene	102	(70-130) %REC
12	1,2-Dichloroethane	ND	1.0 μg/L			, , ,	
13	1,1,1-Trichloroethane	ND	1.0 μg/L				
14	Carbon tetrachloride	ND	1.0 µg/L				
15	Benzene	ND	1.0 µg/L				
16	1,2-Dichloropropane	ND	1.0 µg/L				
17	Trichloroethene	ND	1.0 µg/L				
18	Bromodichloromethane	ND	1.0 µg/L				
19	cis-1,3-Dichloropropene	ND	1.0 µg/L				
20	trans-1,3-Dichloropropene	ND	1.0 μg/L				
21	1,1,2-Trichloroethane	ND	1.0 μg/L				
22	Toluene	ND	1.0 μg/L				
23	Dibromochloromethane	ND	1.0 µg/L				
24	Tetrachloroethene	ND	1.0 µg/L				
25	Chlorobenzene	ND	1.0 µg/L				

Sample results were calculated on a wet weight basis. ND = Not Detected

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer $Sacramento, CA \bullet (916)\ 366-9089 \ / \ Las\ Vegas, NV \bullet (702)\ 281-4848 \ \ / \ Carson, CA \bullet (714)\ 386-2901 \ / \ \ info@alpha-analytical.com$ Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise. Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Job:

LVRRN014/Lackawanna Mill

Alpha Analytical Number: MGA12061524-06A

Client I.D. Number: LVBRN014-SS-05

Attn:

Brett Bottenberg (702) 260-4961

Phone: Fax:

(702) 260-4968

Sampled: 06/13/12 11:40

Received: 06/15/12

Extracted: 06/19/12 13:54

Analyzed: 06/20/12

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	80 μg/Kg	26	Ethylbenzene	ND	20 μg/Kg
2	Vinyl chloride	ND	20 μg/Kg	27	m,p-Xylene	ND	20 µg/Kg
3	Chloroethane	ND	20 μg/Kg	28	Bromoform	ND	20 μg/Kg
4	Bromomethane	ND	80 μg/Kg	29	o-Xylene	ND	20 μg/Kg
5	Trichlorofluoromethane	ND	20 μg/Kg	30	1,1,2,2-Tetrachloroethane	ND	20 μg/Kg
6	1,1-Dichloroethene	ND	20 μg/Kg	31	1,3-Dichlorobenzene	ND	20 μg/Kg
7	Dichloromethane	ND	80 μg/Kg	32	1,4-Dichlorobenzene	ND	20 μg/Kg
8	trans-1,2-Dichloroethene	ND	20 μg/Kg	33	1,2-Dichlorobenzene	ND	20 μg/Kg
9	1,1-Dichloroethane	ND	20 μg/Kg	34	Surr: 1,2-Dichloroethane-d4	84	(70-130) %REC
10	cis-1,2-Dichloroethene	ND	20 μg/Kg	35	Surr: Toluene-d8	114	(70-130) %REC
11	Chloroform	ND	20 µg/Kg	36	Surr: 4-Bromofluorobenzene	83	(70-130) %REC
12	1,2-Dichloroethane	ND	20 μg/Kg			1	
13	1,1,1-Trichloroethane	ND	20 µg/Kg				
14	Carbon tetrachloride	ND	20 μg/Kg				
15	Benzene	ND .	20 µg/Kg				
16	1,2-Dichloropropane	ND	20 μg/Kg				
17	Trichloroethene	ND	20 µg/Kg				
18	Bromodichloromethane	ND	20 μg/Kg				
19	cis-1,3-Dichloropropene	ND	20 µg/Kg				
20	trans-1,3-Dichloropropene	ND	20 µg/Kg				
21	1,1,2-Trichloroethane	ND	20 µg/Kg				
22	Toluene	ND	20 μg/Kg				
23	Dibromochloromethane	ND	20 μg/Kg				
24	Tetrachloroethene	ND	20 μg/Kg				
25	Chlorobenzene	ND	20 µg/Kg				

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger Scholl

Kandy Saulmer

Dalter Finden

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info(a/alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

6/21/12 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

McGinley & Associates 6280 S. Valley View Blvd Las Vegas, NV 89118

Job:

LVRRN014/Lackawanna Mill

Attn: Brett Bottenberg Phone: (702) 260-4961

Fax: (702) 260-4968

Alpha Analytical Number: MGA12061524-18A

Client I.D. Number: Trip Blank

Sampled: 06/13/12 00:00 Received: 06/15/12

Extracted: 06/20/12 Analyzed: 06/20/12

Volatile Organics by GC/MS EPA Method SW8260B

			Reporting				Reporting
	Compound	Concentration	Limit		Compound	Concentration	Limit
1	Chloromethane	ND	2.0 µg/L	26	Ethylbenzene	ND	1.0 μg/L
2	Vinyl chloride	ND	1.0 μg/L	27	m,p-Xylene	ND	1.0 μg/L
3	Chloroethane	ND	1.0 μg/L	28	Bromoform	ND	1.0 μg/L
4	Bromomethane	ND	2.0 µg/L	29	o-Xylene	ND	1.0 μg/L
5	Trichlorofluoromethane	ND	1.0 µg/L	30	1,1,2,2-Tetrachloroethane	ND	1.0 µg/L
6	1,1-Dichloroethene	ND	1.0 μg/L	31	1,3-Dichlorobenzene	ND	1.0 μg/L
7	Dichloromethane	ND	2.0 µg/L	32	1,4-Dichlorobenzene	ND	1.0 μg/L
8	trans-1,2-Dichloroethene	ND	1.0 μg/L	33	1,2-Dichlorobenzene	ND	1.0 µg/L
9	1,1-Dichloroethane	ND	1.0 μg/L	34	Surr: 1,2-Dichloroethane-d4	95	(70-130) %REC
10	cis-1,2-Dichloroethene	ND	1.0 μg/L	35	Surr: Toluene-d8	101	(70-130) %REC
11	Chloroform	ND	1.0 μg/L	36	Surr: 4-Bromofluorobenzene	102	(70-130) %REC
12	1,2-Dichloroethane	ND	1.0 µg/L				
13	1,1,1-Trichloroethane	ND	1.0 μg/L				
14	Carbon tetrachloride	ND	1.0 μg/L				
15	Benzene	ND	1.0 μg/L				
16	1,2-Dichloropropane	ND	1.0 μg/L				
17	Trichloroethene	ND	1.0 μg/L .				
18	Bromodichloromethane	ND	1.0 µg/L				
19	cis-1,3-Dichloropropene	ND	1.0 μg/L				
20	trans-1,3-Dichloropropene	ND	1.0 μg/L				
21	1,1,2-Trichloroethane	ND	1.0 µg/L				
22	Toluene	ND	1.0 µg/L			,	
23	Dibromochloromethane	ND	1.0 µg/L				
24	Tetrachloroethene	ND	1.0 µg/L				
25	Chlorobenzene	ND	1.0 μg/L				

Sample results were calculated on a wet weight basis. ND = Not Detected

Roger Scholl

Kandy Saulner

Walter Strikm

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com
Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available NDEP certifications for the data reported - certification #NV00016.

6/21/12 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: MGA12061524 Job: LVRRN014/Lackawanna Mill

Alpha's Sample ID	Client's Sample ID	Matrix	рН	
12061524-04A	EQUIP. BLANK	Aqueous	2	
12061524-18A	Trip Blank	Aqueous	2	

6/21/12

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 22-Jun-12	(Work Orde 12061524							
Method Blank		Type: M	BLK T	est Code: EF	A Met	hod SW80	82		
File ID: 12061921.D		•	Ва	atch ID: 2893	6A		Analysis Date	e: 06/19/2012 18:06	
Sample ID: MBLK-28936	Units : µg/K	1	Run ID: EC	D_1_12061	8B		Prep Date:	06/18/2012 16:22	
Analyte	Result	PQL				LCL(ME)	•	efVal %RPD(Limit)	Qual
Aroclor 1016	ND	33		<u> </u>		, ,	<u></u>		_
Aroclor 1221	ND	33							
Aroclor 1232	ND	33							
Aroclor 1242	ND	33							
Aroclor 1248	ND	33							
Aroclor 1254	ND	33							
Aroclor 1260	ND	33							
Surr: Tetrachloro-m-xylene	22.1		20		110	41	152		
Surr: Decachlorobiphenyl	23.5		20		117	39	163		
Laboratory Control Spike		Type: L	CS Te	est Code: EF	'A Met	hod SW80	82		
File ID: 12061922.D			Ва	atch ID: 289 3	6A		Analysis Date	e: 06/19/2012 18:19	
Sample ID: LCS-28936	Units : µg/K	ı	Run ID: EC	D_1_12061	8B		Prep Date:	06/18/2012 16:22	
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual
Aroclor 1232	173	33	200	<u>-</u>	86	40	157		
Surr: Tetrachloro-m-xylene	21.5		20		108	41	152		
Surr: Decachlorobiphenyl	23		20		115	39	163		
Sample Matrix Spike		Type: M	IS Te	est Code: EF	A Met	hod SW80	82	<u></u>	
File ID: 12061924.D			Ва	atch ID: 289 3	6A		Analysis Date	e: 06/19/2012 18:46	
Sample ID: 12061524-03AMS	Units : µg/Kg	3	Run ID: EC	D_1_12061	8B		Prep Date:	06/18/2012 16:22	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual
Aroclor 1232	268	33	200	0	134	32	165		
Surr: Tetrachloro-m-xylene	22.1		20		111	41	152		
Surr: Decachlorobiphenyl	23		20		115	39	163		
Sample Matrix Spike Duplicate		Туре: М	SD Te	est Code: EF	A Met	hod SW80	82		
File ID: 12061927.D			Ва	atch ID: 2893	6A		Analysis Date	e: 06/19/2012 19:27	
Sample ID: 12061524-03AMSD	Units : µg/Kg	1	Run ID: EC	D_1_12061	8B		Prep Date:	06/18/2012 16:22	
Analyte	Result	PQL				LCL(ME)	•	efVal %RPD(Limit)	Qual
Aroclor 1232	276	33		. 0	138	32	165 26	*******	
Surr: Tetrachloro-m-xylene	21.2	30	20	Ū	106	41	152	()	
Surr: Decachlorobiphenyl	22.9		20		114	39	163		
					, , ,				

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 22-Jun-12	(Work Order: 12061524								
Method Blank		Туре: М	BLK T	est Code: EF	A Met	hod SW60)20 / SW602	0A		
File ID: 061812.B\151_M.D\		•		atch ID: 2893	33		Analysis	s Date:	06/19/2012 19:24	
Sample ID: MB-28933	Units : mg/L		Run ID: IC	P/MS_1206	19C		Prep Da	ate:	06/18/2012 13:53	
Analyte	Result	PQL		_		LCL(ME)	UCL(ME) R	.PDRef\	/al %RPD(Limit)	Qual
Beryllium (Be)	ND	0.004		·			`			
Vanadium (V)	ND	0.005								
Chromium (Cr)	ND	0.005								
Cobalt (Co)	ND	0.005								
Nickel (Ni) Copper (Cu)	ND ND	0.01 0.01								
Zinc (Zn)	ND ND	0.01								
Arsenic (As)	ND	0.005								
Selenium (Se)	ND	0.005								
Molybdenum (Mo)	ND	0.005								
Silver (Ag)	ND	0.005								
Cadmium (Cd) Antimony (Sb)	ND ND	0.005 0.005								
Barium (Ba)	ND	0.005								
Mercury (Hg)	ND	0.001								
Thallium (TI)	ND	0.002								
Lead (Pb)	ND	0.005								
Laboratory Control Spike		Type: L				hod SW60	20 / SW602			
File ID: 061812.B\240_M.D\				atch ID: 2893					06/20/2012 09:43	
Sample ID: LCS-28933	Units : mg/L			P/MS_1206			Prep Da		06/18/2012 13:53	
Analyte	Result	PQL	SpkVal	SpkRefVal		LCL(ME)		PDRef\	/al %RPD(Limit)	Qual
Beryllium (Be)	0.243	0.002			97	80	120			
Vanadium (V) Chromium (Cr)	0.243	0.01			97	80	120			
Cobalt (Co)	0.297 0.295	0.01 0.005			119 118	80 80	120 120			
Nickel (Ni)	0.252	0.003			101	80	120			
Copper (Cu)	0.255	0.02			102	80	120			
Zinc (Zn)	0.259	0.1			104	80	120			
Arsenic (As)	0.278	0.005			111	80	120			
Selenium (Se) Molybdenum (Mo)	0.279 0.262	0.005			112 105	80 80	120 120			
Silver (Ag)	0.252	0.005 0.005			105	80 80	120			
Cadmium (Cd)	0.266	0.002			106	80	120			
Antimony (Sb)	0.277	0.003			111	80	120			
Barium (Ba)	2.82	0.005			113	80	120			
Mercury (Hg)	0.00467	0.001			93	80	120			
Thallium (TI) Lead (Pb)	0.212	0.002			85 406	80	120			
	0.266	0.005			106	80	120			
Sample Matrix Spike File ID: 061812.B\157_M.D\		Type: M				hod SW60)20 / SW602		06/40/2042 40.59	
Sample ID: 12061501-01AMS	l inita :			atch ID: 2893			-		06/19/2012 19:58	
Analyte	Units : mg/L	DOI.		P/MS_1206		LCL(ME)	Prep Da		06/18/2012 13:53 Val %RPD(Limit)	Qual
Beryllium (Be)	Result	PQL		•				I DIVEL	vai /oiti D(Liiiiit)	
Vanadium (V)	0.306 0.277	0.002 0.01		0.00904	122 107	75 75	125 125			
Chromium (Cr)	0.336	0.01		0.04803	115	75 75	125			
Cobalt (Co)	0.288	0.005		0.0.000	115	75	125			
Nickel (Ni)	0.286	0.01		0	114	75	125			
Copper (Cu)	0.337	0.02		0.08751	99.7	75	125			
Zinc (Zn) Arsenic (As)	0.502	0.1		0.2583	98 101	75 75	125			
Selenium (Se)	0.254 0.273	0.005 0.005		0	101 109	75 75	125 125			
Molybdenum (Mo)	0.273 0.275	0.005		0	110	75 75	125			
Silver (Ag)	0.261	0.005		ő	104	75	125			
Cadmium (Cd)	0.273	0.002	0.25	0	109	75	125			
Antimony (Sb)	0.28	0.003		0	112	75	125			
Barium (Ba)	2.99	0.005		0.01595	119	75 75	125			
Mercury (Hg) Thallium (Tl)	0.00463 0.228	0.001 0.002		0	93 91	75 75	125 125			
Lead (Pb)	0.228	0.002		0	112	75 75	125			
• ,	0.201	3.500	0.20	0		, ,				

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 22-Jun-12	(Work Order: 12061524								
Sample Matrix Spike Duplicate File ID: 061812.B\158_M.D\		Type: MS		est Code: El		hod SW6			/19/2012 20:04	<u> </u>
Sample ID: 12061501-01AMSD	Units : mg/L	F	Run ID: IC	P/MS 1206	19C		Prep	Date: 06	/18/2012 13:53	3
Analyte	Result	PQL		_		LCL(ME)	•		%RPD(Limit)	Qual
Beryllium (Be)	0.334	0.002	0.25	0	134	75	125	0.3058	8.9(20)	M1
Vanadium (V) Chromium (Cr)	0.302 0.375	0.01 0.01	0.25 0.25	0.00904 0.04803	117 131	75 75	125 125	0.2771 0.336	8.6(20) 11.0(20)	M1
Cobalt (Co) Nickel (Ni)	0.314 0.311	0.005 0.01	0.25 0.25	0 0	125 124	75 75	125 125	0.2882 0.286	8.4(20) 8.3(20)	
Copper (Cu) Zinc (Zn)	0.375 0.553	0.02 0.1	0.25 0.25	0.08751 0.2583	115 118	75 75	125 125	0.3368 0.5021	10.7(20) 9.7(20)	
Arsenic (As) Selenium (Se)	0.268 0.288	0.005 0.005	0.25 0.25	0 0	107 115	75 75	125 125	0.2537 0.2728	5.5(20) 5.4(20)	
Molybdenum (Mo) Silver (Ag) Cadmium (Cd)	0.306 0.271	0.005	0.25 0.25	0	122 108	75 75	125 125	0.2748	10.6(20) 3.9(20)	
Antimony (Sb) Barium (Ba)	0.294 0.305 3.22	0.002 0.003 0.005	0.25 0.25 2.5	0 0 0.01595	118 122 128	75 75 75	125 125 125	0.2733 0.2801 2.993	7.3(20) 8.5(20) 7.4(20)	M1
Mercury (Hg) Thallium (Ti) Lead (Pb)	0.0048 0.251 0.298	0.001 0.002 0.005	0.005 0.25 0.25	0.01000	96 101 119	75 75 75	125 125 125	0.004632 0.2284 0.2811	3.5(20) 9.6(20) 5.8(20)	1411

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

M1 = Matrix spike recovery was high, the method control sample recovery was acceptable.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 21-Jun-12	·		Work Order: 12061524						
Method Blank		Type: M I	BLK Te	est Code: EPA	A Meth	od SW602	20 / SW6020A		
File ID: 061812.B\177_M.D\		•		atch ID: 28935	5		Analysis Date:	06/19/2012 22:33	
Sample ID: MB-28935	Units : mg/	Ka	Run ID: IC	P/MS_120619	ÐΕ		Prep Date:	06/18/2012 16:32	
Analyte	Result	PQL				LCL(ME)	UCL(ME) RPDRef		Qual
Beryllium (Be)	ND	1	•р	-					
Vanadium (V)	ND	1							
Chromium (Cr)	ND	i							
Cobalt (Co)	ND	1							
Nickel (Ni)	ND	2							
Copper (Cu)	ND	2							
Zinc (Zn)	ND ND	20 1							
Arsenic (As) Selenium (Se)	ND ND	1							
Molybdenum (Mo)	ND	i							
Silver (Ag)	ND	1							
Cadmium (Cd)	ND	1							
Antimony (Sb)	ND	1							
Barium (Ba)	ND	1							
Mercury (Hg) Thallium (TI)	ND ND	0.2 1							
Lead (Pb)	ND	. 1							
	, 12	Type:1.0	- T	oot Codo: ED	A Math	od SMen	20 / SW6020A	*****	
Laboratory Control Spike		Type: L0				100 34400		00/40/2040 20-20	
File ID: 061812.B\178_M.D\	11.34			atch ID: 28935			•	06/19/2012 22:38	
Sample ID: LCS-28935	Units : mg/			P/MS_120619			Prep Date:	06/18/2012 16:32	
Analyte	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
Beryllium (Be)	24.7	1	25		99	80	120		
Vanadium (V)	23.4	1	25		94	80	120		
Chromium (Cr)	26.9	1	25 25		108	80 80	120 120		
Cobalt (Co) Nickel (Ni)	26.1 26.1	1 2	25 25		104 104	80 80	120		
Copper (Cu)	26.7	. 2	25		107	80	120		
Zinc (Zn)	26.4	20	25		106	80	120		
Arsenic (As)	26.1	1	25		104	80	120		
Selenium (Se)	26.3	1	25		105	80	120		
Molybdenum (Mo)	25.8	1	25		103	80	120		
Silver (Ag) Cadmium (Cd)	27.4 26.3	1	25 25		110 105	80 80	120 120		
Antimony (Sb)	25.6	1	25 25		103	80	120		
Barium (Ba)	243	1	250		97	80	120		
Mercury (Hg)	0.441	0.2	0.5		88	80	120		
Thallium (TI)	20.9	1	25		83	80	120		
Lead (Pb)	26.4	1	25		105	80	120		
Sample Matrix Spike		Type: M	S T	est Code: EP	A Meth	nod SW60	20 / SW6020A		
File ID: 061812.B\183_M.D\			В	atch ID: 2893	5		Analysis Date:	06/19/2012 23:07	
Sample ID: 12061524-01AMS	Units : mg/	Kg	Run ID: IC	P/MS_120619	9E		Prep Date:	06/18/2012 16:32	
Analyte	Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
Beryllium (Be)	28.1	1	25	0	112	75	125		
Vanadium (V)	58.9	1	25	33.08	103	75	125		
Chromium (Cr)	191	1	25	163.1	112	75	125		
Cobalt (Co)	61.4	1	25	27.4	136	75	125		M1
Nickel (Ni)	101	2		69.48	125	75	125		
Copper (Cu)	3120	. 2			1200	75 	125		M3
Zinc (Zn)	8960	20	25		820	75 	125		M3
Arsenic (As)	166	1	25	127.8	154	75 75	125		М3
Selenium (Se)	29.2	1	25	2.451	107	75 75	125		
Molybdenum (Mo) Silver (Ag)	35.8 503	1	25 25	7.188 . 596.4	114 -370	75 75	125 125		M3
Cadmium (Cd)	96	1	25 25	76.16	-370 79	75 75	125		IVIO
Antimony (Sb)	2250	1	25 25		1420	75 75	125		МЗ
Barium (Ba)	425	1	250	124.3	120	75	125		
Mercury (Hg)	16.6	0.2		14.9	342	. 75	125		МЗ
Thallium (TI)	25.1	. 1	25	1.082	96	75	125		
Lead (Pb)	24700	1	25	19960 1	19100	75	125		M3

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 21-Jun-12		QC Su	mmar			Work O r 120615				
Sample Matrix Spike Duplicate File ID: 061812.B\184_M.D\		Туре: М	-	est Code: EF atch ID: 2893		od SW60			6/19/2012 23:1	3
Sample ID: 12061524-01AMSD	Units : mg/	Kg I	Run ID: IC	P/MS_1206 ²	19E		Prep	Date: 0	6/18/2012 16:3	2
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRefVa	l %RPD(Limit)	Qual
Beryllium (Be) Vanadium (V) Chromium (Cr)	26.4 63.4 149	1 1 1	25 25 25	0 33.08 163.1	105 121 -56	75 75 75	125 125 125	28.11 58.85 191.1	6.4(20) 7.4(20) 24.6(20)	M3 R58
Cobalt (Co) Nickel (Ni) Copper (Cu)	55.5 99.9 3060	1 2 2	25 25 25	27.4 69.48 2820	112 122 948	75 75 75	125 125 125	61.36 100.7 3119	10.0(20) 0.8(20) 2.0(20)	M3
Zinc (Zn)	8660	20	25	8759	-380	75	125	8964	3.4(20)	M3
Arsenic (As) Selenium (Se) Molybdenum (Mo)	165 28.5	1	25 25	127.8 2.451	150 104	75 75	125 125	166.2 29.24	0.5(20) 2.5(20)	M3
Silver (Ag)	37.8 483	1	25 25	7.188 596.4	122 -460	75 75	125 125	35.75 503.1	5.5(20) 4.2(20)	МЗ
Cadmium (Cd) Antimony (Sb)	105 2220	1	25 25	76.16 1898	113 1290	75 75	125 125	95.97 2253	8.5(20) 1.4(20)	МЗ
Barium (Ba) Mercury (Hg)	398 17.9	1 0.2	250 0.5	124.3 14.9	110 594	75 75	125 125	424.5 16.61	6.4(20) 7.3(20)	M3
Thallium (TI) Lead (Pb)	25.8 17400	. 1 . 1	25 25	1.082 19960	99 -10000	75 75	125 125	25.12 24730	2.8(20) 35.1(20)	M3 R58

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

M1 = Matrix spike recovery was high, the method control sample recovery was acceptable.

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to the spike level. The method control sample recovery was acceptable.

R58 = MS/MSD RPD exceeded the laboratory control limit.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 22-Jun-12		Work Orde 12061524						
Laboratory Control Spike File ID:		Type: L		est Code: EPA Met	hod SW9		06/21/2012 09:36	
Sample ID: LCS-S0621PH	Units : pH		Run ID: W	ETLAB_120621B		Prep Date:	06/21/2012 09:36	
Analyte	Result	PQL	SpkVal	SpkRefVal %REC	LCL(ME)	UCL(ME) RPDRef	rVal %RPD(Limit)	Qual
pH	5.05	1.7	7 5	101	90	110		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date:	(QC St	ımmaı		Work Order: 12061524					
Method Blank		Type: M	BLK 7	est Code: EF	A Met	hod SW82	70C			
File ID: 12062004.D			E	Batch ID: 289 3	30		Analys	is Date:	06/20/2012 11:22	
Sample ID: MBLK-28930	Units : µg/Kg	1	Run ID: N	ISD_16_1206	518A		Prep D	ate:	06/18/2012 12:27	
Analyte	Result	PQL				LCL(ME)	UCL(ME) I	RPDRef\	/al %RPD(Limit)	Qual
Naphthalene	ND	25								
2-Methylnaphthalene	ND	25								
1-Methylnaphthalene	ND	25								
Acenaphthylene	ND	25								
Acenaphthene	ND	25								
Fluorene	ND	25								
Phenanthrene	ND	25								
Anthracene	ND	25								
Fluoranthene	ND	25								
Pyrene	ND	25								
Benzo(a)anthracene	ND	25								
Chrysene	ND	25								
Benzo(b&k)fluoranthene, isomeric pair	ND	50								
Benzo(a)pyrene	ND	25								
Indeno(1,2,3-cd)pyrene	ND	25								
Dibenz(a,h)anthracene	ND	25								
Benzo(g,h,i)perylene	ND	25	040 5		440	- 4	400			
Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14	349		312.5		112	54	130			
	328		312.5		105	24	145			
Laboratory Control Spike File ID: 12062025.D		Type: L		est Code: EF		hod SW82				
				Batch ID: 2893			-		06/20/2012 20:22	
Sample ID: LCS-28930	Units : μg/Κο	ı	Run ID: N	ISD_16_1206	518A		Prep D	ate:	06/18/2012 12:27	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Acenaphthene	346	25	312.5	;	111	53	130			
Pyrene	316	25			101	26	137			
Surr: 2-Fluorobiphenyl	334		312.5	i	107	54	130			
Surr: 4-Terphenyl-d14	331		312.5		106	24	145			
Sample Matrix Spike		Туре: М	S 1	est Code: EF	A Met	hod SW82	70C			
File ID: 12062023.D			E	Batch ID: 2893	30		Analys	is Date:	06/20/2012 19:31	
Sample ID: 12061524-01AMS	Units : μg/Kg	j	Run ID: N	ISD_16_1206	18A		Prep D	ate:	06/18/2012 12:27	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Acenaphthene	365	25	312.5	0	117	26	142			
Pyrene	379	25	312.5		104	5	154			
Surr: 2-Fluorobiphenyl	325		312.5	1	104	54	130			
Surr: 4-Terphenyl-d14	314		312.5		101	24	145			
Sample Matrix Spike Duplicate		Type: M	SD 7	est Code: EF	A Met	hod SW82	70C			
File ID: 12062024.D		••		Batch ID: 2893	30		Analys	is Date:	06/20/2012 19:57	
Sample ID: 12061524-01AMSD	Units : μg/Κο	1		ISD_16_1206			Prep D		06/18/2012 12:27	
Analyte	Result	PQL				LCL(ME)	=		/al %RPD(Limit)	Qual
Acenaphthene	349	25	312.5		112	26	142	365.4		
Pyrene	349	25 25	312.5		91	20 5	154	379.5		
Surr: 2-Fluorobiphenyl	332	20	312.5		106	54	130	019.0	, 10.3(00)	
Surr: 4-Terphenyl-d14	301		312.5		96	24	145			
,						<u></u>	1-70			
Comments										

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Sample ID: MBLK MS08S8941A Units : µg/Kg Run ID: MSD_08_120619B Prep Analyte Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME) Chloromethane ND 40 Vinyl chloride ND 20 Chloroethane ND 20 Bromomethane ND 40 Trichlorofluoromethane ND 20 1,1-Dichloroethene ND 20 Dichloromethane ND 40 trans-1,2-Dichloroethene ND 40	ysis Date: 06/20/2012 17:23 Date: 06/20/2012 17:23) RPDRefVal %RPD(Limit) Qua
Sample ID: MBLK MS08S8941A Units : µg/Kg Run ID: MSD_08_120619B Prep Analyte Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME) Chloromethane ND 40 Vinyl chloride ND 20 Chloroethane ND 20 Bromomethane ND 40 Trichlorofluoromethane ND 20 1,1-Dichloroethene ND 20 Dichloromethane ND 40 trans-1,2-Dichloroethene ND 20	Date: 06/20/2012 17:23
Analyte Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME) Chloromethane ND 40 Vinyl chloride ND 20 Chloroethane ND 20 Bromomethane ND 40 Trichlorofluoromethane ND 20 1,1-Dichloroethene ND 20 Dichloromethane ND 40 trans-1,2-Dichloroethene ND 20	
Analyte Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME) Chloromethane ND 40 Vinyl chloride ND 20 Chloroethane ND 20 Bromomethane ND 40 Trichlorofluoromethane ND 20 1,1-Dichloroethene ND 20 Dichloromethane ND 40 trans-1,2-Dichloroethene ND 20	
Chloromethane ND 40 Vinyl chloride ND 20 Chloroethane ND 20 Bromomethane ND 40 Trichlorofluoromethane ND 20 1,1-Dichloroethene ND 20 Dichloromethane ND 40 trans-1,2-Dichloroethene ND 20	
Vinyl chloride ND 20 Chloroethane ND 20 Bromomethane ND 40 Trichlorofluoromethane ND 20 1,1-Dichloroethene ND 20 Dichloromethane ND 40 trans-1,2-Dichloroethene ND 20	
Chloroethane ND 20 Bromomethane ND 40 Trichlorofluoromethane ND 20 1,1-Dichloroethene ND 20 Dichloromethane ND 40 trans-1,2-Dichloroethene ND 20	
Bromomethane ND 40 Trichlorofluoromethane ND 20 1,1-Dichloroethene ND 20 Dichloromethane ND 40 trans-1,2-Dichloroethene ND 20	
Trichlorofluoromethane ND 20 1,1-Dichloroethene ND 20 Dichloromethane ND 40 trans-1,2-Dichloroethene ND 20	
1,1-Dichloroethene ND 20 Dichloromethane ND 40 trans-1,2-Dichloroethene ND 20	
Dichloromethane ND 40 trans-1,2-Dichloroethene ND 20	
trans-1,2-Dichloroethene ND 20	
112	
1,1-Dichloroethane ND 20	
cis-1,2-Dichloroethene ND 20	
Chloroform ND 20	
1,2-Dichloroethane ND 20	
1,1,1-Trichloroethane ND 20	
Carbon tetrachloride ND 20	
Benzene ND 20	
4.0 71.11	
20	
4.0 0014	
20	
44.5	
- 1	
70 20	
F4 11	
V.1	
Bromoform ND 20	
o-Xylene ND 20	
1,1,2,2-Tetrachloroethane ND 20	
1,3-Dichlorobenzene ND 20	
1,4-Dichlorobenzene ND 20	
1,2-Dichlorobenzene ND 20	
Surr: 1,2-Dichloroethane-d4 166 200 83 70 130	
Surr: Toluene-d8 227 200 114 70 130	
Surr: 4-Bromofluorobenzene 176 200 88 70 130	
Laboratory Control Spike Type: LCS Test Code: EPA Method SW8260B	
File ID: 12062025.D Batch ID: MS08S8941A Analys	vsis Date: 06/20/2012 17:46
Sample ID: LCS MS10S8941A Units: µg/Kg Run ID: MSD_08_120619B Prep [
Analyte Result PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME)	
1,1-Dichloroethene 254 20 400 64 10 132	(
Benzene 365 10 400 91 70 138	
Trichloroethene 415 20 400 104 70 150	
Toluene 359 10 400 90 70 137	
Oblanda	
The discussion 50 10 101	
- No.	
- W.I	
20 10 400 100 70 145	
Prime Talana and 10	
Comm. A Decree 6 2001	
Surr: 4-Bromofluorobenzene 418 400 104 70 130	,

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 26-Jun-12	(Work Order: 12061524								
Sample Matrix Spike		Type: MS	5 To	est Code: El	PA Met	hod SW82	60B			
File ID: 12062026.D			Ва	atch ID: MS)8 S894	11A	Analy	sis Date: 00	6/20/2012 18:10	
Sample ID: 12061524-03AMS	Units : µg/Kg	a F	Run ID: M	SD_08_120	619B		Prep	Date: 00	6/20/2012 18:10	
Analyte	Result	PQL				LCL(ME)	UCL(ME)	RPDRefVal	%RPD(Limit)	Qual
1,1-Dichloroethene	184	20	400	0	46	10	132			
Benzene	411	10	400	0	103	53	150			
Trichloroethene	480	20	400	0	120	48	165			
Toluene	405	10	400	0	101	51	149			
Chlorobenzene	418	20	400	0	105	51	147			
Ethylbenzene	441	10	400	0	110	54	150			
m,p-Xylene	460	10	400	0	115	50	161			
o-Xylene	480	10	400	0	120	35	177			
Surr: 1,2-Dichloroethane-d4	361		400		90	70	130			
Surr: Toluene-d8	378		400		94	70	130			
Surr: 4-Bromofluorobenzene	417		400		104	70	130			
Sample Matrix Spike Duplicate		Type: MS	SD T	est Code: El	PA Met	thod SW82	60B			
File ID: 12062027.D			Ва	atch ID: MS	085894	11A	Analy	/sis Date: 0	6/20/2012 18:33	
Sample ID: 12061524-03AMSD	Units : µg/Kg	g F	Run ID: M	SD_08_120	619B		Prep	Date: 0	6/20/2012 18:33	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRefVal	%RPD(Limit)	Qual
1,1-Dichloroethene	216	20	400	0	54	10	132	183.6	16.2(40)	
Benzene	390	10	400	. 0	98	53	150	410.5	5.0(26)	
Trichloroethene	443	20	400	0	111	48	165	479.5	7.8(26)	
Toluene	376	10	400	0	94	51	149	405.4	7.6(26)	
Chlorobenzene	390	20	400	0	98	51	147	418	6.8(40)	
Ethylbenzene	412	10	400	0	103	54	150	440.9	6.7(29)	
m,p-Xylene	427	10	400	0	107	50	161	460.1	7.6(38)	
o-Xylene	454	10	400	0	114	35	177	479.8	5.4(40)	
Surr: 1,2-Dichloroethane-d4	384		400		96	70	130			
Surr: Toluene-d8	367		400		92	70	130			
Surr: 4-Bromofluorobenzene	419		400		105	. 70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 27-Jun-12	· (Work Order: 12061524						
Method Blank File ID: 12062010.D		Type: M		t Code: EPA Met			06/20/2012 11:43	
Sample ID: MBLK MS15W0620A	I loite t!!				204	-		
	Units : µg/L			D_15_120620B		Prep Date:	06/20/2012 11:43	
Analyte	Result	PQL	SpkVal S	SpkRefVal %REC	: LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qu:
Chloromethane	ND	2						
Vinyl chloride	ND	1						
Chloroethane	ND	1						
Bromomethane	ND	2						
Trichlorofluoromethane	ND	1						
1,1-Dichloroethene	ND	1						
Dichloromethane trans-1,2-Dichloroethene	ND	2						
1,1-Dichloroethane	ND	- 1						
cis-1,2-Dichloroethene	ND	1						
Chloroform	ND ND	1						
1,2-Dichloroethane	ND ND	1						
1,2-Dichloroethane	ND ND	1						
Carbon tetrachloride	ND ND] 						
Benzene	ND ND	1						
1,2-Dichloropropane	ND	1						
Trichloroethene	ND	1						
Bromodichloromethane	ND ND	1						
cis-1,3-Dichloropropene	ND	1						
rans-1,3-Dichloropropene	ND	1						
1,1,2-Trichloroethane	ND	1						
Toluene	ND	1						
Dibromochloromethane	ND	i						
Tetrachloroethene	ND	1						
Chlorobenzene	ND	1						
Ethylbenzene	ND	1						
m,p-Xylene	ND	1						
Bromoform	ND	1						
o-Xylene	, ND	1						
1,1,2,2-Tetrachloroethane	ND	1						
1,3-Dichlorobenzene	ND	1						
1,4-Dichlorobenzene	ND	1						
1,2-Dichlorobenzene	ND	1						
Surr: 1,2-Dichloroethane-d4	9.09		10	91	70	130		
Surr: Toluene-d8	10.4		10	104	70	130		
Surr: 4-Bromofluorobenzene	10.4		10	104	70	130		
Laboratory Control Spike		Type: L0	CS Tes	t Code: EPA Met	hod SW82	260B		
File ID: 12062009.D		•		ch ID: MS15W062			06/20/2012 11:16	
Sample ID: LCS MS15W0620A	Units : µg/L)_15_120620B		Prep Date:	06/20/2012 11:16	
Analyte	Result				LOL(ME)	•		O
· · · · · · · · · · · · · · · · · · ·		PQL	-	-		UCL(ME) RPDRef	vai %RPD(Limit)	Qua
I,1-Dichloroethene	9.96	1	10	99.6	80	120		
Benzene Frieblaraathana	9.32	0.5	10	93	70	130		
Frichloroethene	9.98	1	10	99.8	65	144		
Toluene	9.33	0.5	10	93	80	120		
Chlorobenzene Ethylbenzene	9.52	1	10	95	70	130		
Ethylbenzene n,p-Xylene	9.47	0.5	10	95	80	120		
n,p-xylene p-Xvlene	9.48	0.5	10	95	70	130		
Surr: 1,2-Dichloroethane-d4	9.25	0.5	10	93	70 70	130		
Surr: 1,2-Dicnioroetnane-d4 Surr: Toluene-d8	10.1		10	101	70	130		
	10.2		10	102	70 70	130		
Surr: 4-Bromofluorobenzene	10.8		10	108	70	130		

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 27-Jun-12	(Work Order: 12061524							
Sample Matrix Spike File ID: 12062614.D	Type: MS Test Code: EPA Method SW8260B Batch ID: MS15W0620A Analysis Date: 0									
Sample ID: 12062040-05AMS	Units : µg/L	F	Run ID: MS	SD_15_1206	20B		Prep Da	ate: 0	6/26/2012 16:55	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRefVal	%RPD(Limit)	Qual
1,1-Dichloroethene	50.8	2.5	50	0	102	64	130			
Benzene	52.1	1.3	50	0	104	59	138			
Trichloroethene	47.4	2.5	50	0	95	65	144			
Toluene	47.9	1.3	50	0	96	68	130			
Chlorobenzene	48.7	2.5	50	0	97	70	130			
Ethylbenzene	48.3	1.3	50	0	97	68	130			
m,p-Xylene	46.4	1.3	50	0	93	68	131			
o-Xylene	46.2	1.3	50	0	92	70	130			
Surr: 1,2-Dichloroethane-d4	41.4		50		83	70	130			
Surr: Toluene-d8	49.4		50		99	70	130			
Surr: 4-Bromofluorobenzene	54.6		50		109	70	130			
Sample Matrix Spike Duplicate		Type: MS	SD Te	est Code: EP	A Met	hod SW82				
File ID: 12062615.D			Ba	atch ID: MS1	5W062	20A	Analysi	s Date: 0	6/26/2012 17:16	
Sample ID: 12062040-05AMSD	Units : µg/L	F	Run ID: MS	SD_15_1206	20B		Prep Da	ate: 0	6/26/2012 17:16	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRefVa	NRPD(Limit)	Qual
1,1-Dichloroethene	50.2	2.5	50	0	100	64	130	50.82	1.3(21)	
Benzene	51.2	1.3	50	0	102	59	138	52.08	1.8(21)	
Trichloroethene	46.5	2.5	50	0	93	65	144	47.41	2.0(20)	
Toluene	46.8	1.3	50	0	94	68	130	47.9	2.2(20)	
Chlorobenzene	47.7	2.5	50	0	95	70	130	48.73	2.1(20)	
Ethylbenzene	47.3	1.3	50	0	95	68	130	48.31	2.2(20)	
m,p-Xylene	45.7	1.3	50	0	91	68	131	46.39	1.5(20)	
o-Xylene	45.3	1.3	50	0	91	70	130	46.18	2.0(20)	
Surr: 1,2-Dichloroethane-d4	41.3		50		83	70	130			
Surr: Toluene-d8	49.2		50		98	70	130			
Surr: 4-Bromofluorobenzene	55.1		50		110	70	130			

Comments

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Laboratory Report Report ID: 121418

Alpha Analytical Attn: Reyna Vallejo 255 Glendale Avenue Suite 21 Sparks, NV 89431

Date: Client: 6/22/2012 ALP-855

Taken by:

B. Bottenberg

PO #:

Dear Reyna Vallejo,

It is the policy of Sierra Environmental Monitoring, Inc to strictly adhere to a comprehensive Quality Assurance Plan that insures the data presented in this report are both accurate and precise. Sierra Environmental Monitoring, Inc. maintains accreditation in the State of Nevada (NV-15 and NV-921) and the State of California (ELAP 2526).

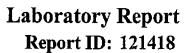
The data presented in this report were obtained from the analysis of samples received under a chain of custody. Unless otherwise noted below, samples were received in good condition, properly preserved and within the hold time for the requested analyses. Any anomalies associated with the analysis of the samples have been flagged with appropriate explanation in the Analysis Report section of this Laboratory Report.

General Comments:

- There are no general comments for this report.

Individual Sample Comments:

- There are no specific comments that are associated with these samples.


Approved By:

Date:

6/22/2012

Sierra Environmental Monitoring, Inc.

This report is applicable only to the sample received by the laboratory. The liability of the laboratory is limited to the amount paid for this report. This report is for the exclusive use of the client to whom it is addressed and upon the condition that the client assumes all liability for the further distribution of the report or its contents.

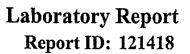
Alpha Analytical Attn: Reyna Vallejo 255 Glendale Avenue Suite 21 Sparks, NV 89431

Date:

6/22/2012

Client:

ALP-855


Taken by:

B. Bottenberg

PO #:

Analysis Report

Laboratory Sample ID	Custo	mer Sample II)	Date Sam	pled Time San	npled Date R	eceived	
S201206-0927	MGA12061524-	07 - LVBRN01	4-SS-06	6/13/20	12 11:55 A	AM 6/15	/2012	
Parameter	Method	Result	Units	Reporting Limit	Analyst	Date Analyzed	Data Flag	
Cyanide, Total	SM 4500 CN C	<0.5	mg/Kg	0.5	Kobza	6/20/2012	Jl	
Laboratory Sample ID S201206-0928	Custo MGA12061524-	mer Sample II		Date Sam 6/13/20	-	_	eceived	
Parameter	Method	Result	Units	Reporting Limit	Analyst	Date Analyzed	Data Flag	
Cyanide, Total	SM 4500 CN C	<0.5	mg/Kg	0.5	Kobza	6/20/2012	JI	
Laboratory Sample ID S201206-0929	Customer Sample ID MGA12061524-09 - LVBRN014-SS-08		Date Sam 6/13/20	_	_	eceived /2012		
Parameter	Method	Result	Units	Reporting		Date Analyzed	Date Data	
Cyanide, Total	SM 4500 CN C	<0.5	mg/Kg	0.5	Kobza	6/20/2012		

Alpha Analytical Attn: Reyna Vallejo 255 Glendale Avenue Suite 21

Date: Client: 6/22/2012 ALP-855

Taken by:

B. Bottenberg

PO #:

Sparks, NV 89431

	<u> </u>	Common	report	The second secon	
Parameter	LCS, % Recovery	MS, % Recovery	MSD, % Recovery	RPD, %	Method Blank
Cyanide, Total	94.0	68.0			<0.005 mg/L
Legend:	LCS- Laboratory Control Standard RPD- Relative Percent Difference	MS- Ma	trix Spike	MSD- Matrix S	pike Duplicate

Quality Control Report

July 03, 2012

Vista Project I.D.: 33838

Ms. Reyna Vallejo Alpha Analytical, Inc. 255 Glendale Avenue Suite 21 Sparks, NV 89431

Dear Ms. Vallejo,

Enclosed are the results for the three soil samples received at Vista Analytical Laboratory on June 16, 2012 under your Project Name "MGA12061524". This work was authorized under your Purchase Order No. MGA12061524. These samples were extracted and analyzed using EPA Method 8290 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at calvin@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Calvin Tanaka

Senior Scientist

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NFLAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Table of Contents

Case Narrative	1
Table of Contents	2
Sample Inventory	3
Analytical Results	4
Qualifiers	10
Certifications	11
Sample Receipt	12

Section I: Sample Inventory Report Date Received: 6/16/2012

<u>Vista Lab. ID</u>	Client Sample ID
33838-001	MGA12061524-01A
33838-002	MGA12061524-05A
33838-003	MGA12061524-12A

ANALYTICAL RESULTS

Method Blank					EPA Method 8290
Matrix: Soil		QC Batch No.:	4511	Lab Sample: 0-MB001	
Sample Size: 10.0 g		Date Extracted:	21-Jun-12	Date Analyzed DB-5: 29-Jun-12	Date Analyzed DB-225: NA
Analyte Conc.	Conc. (pg/g)	DLa	EMPC ^b Qualifiers	Labeled Standard	%R LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	Q	0.0594		IS 13C-2,3,7,8-TCDD	95.9 40 - 135
1,2,3,7,8-PeCDD	ND	0.0715		13C-1,2,3,7,8-PeCDD	100 40 - 135
1,2,3,4,7,8-HxCDD	QN	0.0654		13C-1,2,3,4,7,8-HxCDD	85.9 40 - 135
1,2,3,6,7,8-HxCDD	2	0.0763		13C-1,2,3,6,7,8-HxCDD	91.5 40 - 135
1,2,3,7,8,9-HxCDD	Ø	0.0805		13C-1,2,3,7,8,9-HxCDD	85.0 40 - 135
1,2,3,4,6,7,8-HpCDD	QN.	0.131	on a constraint of the section of th	13C-1,2,3,4,6,7,8-HpCDD	87.9 40 - 135
OCDD	QN		0.270	13C-OCDD	80.9 40 - 135
2,3,7,8-TCDF	S	0.0672		13C-2,3,7,8-TCDF	93.4 40 - 135
1,2,3,7,8-PeCDF	R	0.0356		13C-1,2,3,7,8-PeCDF	112 40-135
2,3,4,7,8-PeCDF	QN	0.0395		13C-2,3,4,7,8-PeCDF	106 40 - 135
1,2,3,4,7,8-HxCDF	Q	0.0332		13C-1,2,3,4,7,8-HxCDF	93.5 40-135
1,2,3,6,7,8-HxCDF	ON	0.0333		13C-1,2,3,6,7,8-HxCDF	99.6 40 - 135
2,3,4,6,7,8-HxCDF	R	0.0380		13C-2,3,4,6,7,8-HxCDF	94.4 40-135
1,2,3,7,8,9-HxCDF	Q.	0.0534	THE TOTAL PROPERTY OF THE PROP	13C-1,2,3,7,8,9-HxCDF	40 - 135
1,2,3,4,6,7,8-HpCDF	QN.	0.0393		13C-1,2,3,4,6,7,8-HpCDF	91.5 40-135
1,2,3,4,7,8,9-HpCDF	QN N	0.0558	en delandona Agina delandona delandona con del 1818. Agin Vida Addina adda a Vida andicida	13C-1,2,3,4,7,8,9-HpCDF	88.7 40 - 135
JCDD.	Ø	0.138		13C-OCDF	87.9 40 - 135
				CRS 37CI-2,3,7,8-TCDD	101 40 - 135
Totals				Toxic Equivalent Quotient (TEQ) Data	ata e
Total TCDD	R	0.0594		TEQ (Min):	
Total PeCDD	R	0.0715	PERIOD OF COMMON DESIGNATION OF COMMON PARKS O		
Total HxCDD	R	0.0805		a. Sample specific estimated detection limit.	
Total HpCDD	ND	0.131		b. Estimated maximum possible concentration.	
Total TCDF	R	0.0672		c. Method detection limit.	
Total PeCDF	R	0.0395	 desides announdededemadement advicement advices a million militaria. 	d. Lower control limit - upper control limit.	
Total HxCDF	Q	0.0534		e. TEQ based on (2005) World Health Organization Toxic Equivalent Factors (WHO)	ion Toxic Equivalent Factors (WHO)
Total HpCDF	ND	0.0558		The results are reported in dry weight. The sample size is reported in wet weight	le size is reported in wet weight.

Approved By: Calv

Calvin Tanaka 03-Jul-2012 12:31

OPR Results					9	EPA Method 8290	290
Matrix: Soil		QC Batch No.:	4511	Lab Sample: 0-OPR001	01		
Sample Size: 10.0 g		Date Extracted:	21-Jun-12	Date Analyzed DB-5: 29-Jun-12		Date Analyzed DB-225:	NA
Analyte	Spike Conc.	Spike Conc. Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	TCT-NCT	Qualifier
2,3,7,8-TCDD	10.0	10.3	7 - 13	IS 13C-2,3,7,8-TCDD	5.86	40 - 135	
1,2,3,7,8-PeCDD	50.0	57.0	35 - 65	13C-1,2,3,7,8-PeCDD	6.66	40 - 135	
1,2,3,4,7,8-HxCDD	50.0	56.6	35 - 65	13C-1,2,3,4,7,8-HxCDD	86.0	40 - 135	
1,2,3,6,7,8-HxCDD	50.0	58.1	35 - 65	13C-1,2,3,6,7,8-HxCDD	91.4	40 - 135	
1,2,3,7,8,9-HxCDD	50.0	57.5	35-65	13C-1,2,3,7,8,9-HxCDD	84.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	50.0	55.4	35 - 65	13C-1,2,3,4,6,7,8-HpCDD	88.2	40 - 135	
OCDD	100	114	70 - 130	13C-OCDD	81.7	40 - 135	
2,3,7,8-TCDF	10.0	1.1	7 - 13	13C-2,3,7,8-TCDF	94.0	40 - 135	
1,2,3,7,8-PeCDF	50.0	51.8	35-65	13C-1,2,3,7,8-PeCDF		40 - 135	
2,3,4,7,8-PeCDF	50.0	51.6	35 - 65	13C-2,3,4,7,8-PeCDF	108	40 - 135	
I,2,3,4,7,8-HxCDF	50.0	49.9	35-65	13C-1,2,3,4,7,8-HxCDF	93.0	40 - 135	
1,2,3,6,7,8-HxCDF	50.0	47.2	35 - 65	13C-1,2,3,6,7,8-HxCDF	99.4	40 - 135	
2,3,4,6,7,8-HxCDF	50.0	47.9	35-65	13C-2,3,4,6,7,8-HxCDF	94.8	40 - 135	
1,2,3,7,8,9-HxCDF	50.0	48.2	35 - 65	13C-1,2,3,7,8,9-HxCDF	95.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	50.0	47.5	35-65	13C-1,2,3,4,6,7,8-HpCDF	92.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	50.0	47.7	35 - 65	13C-1,2,3,4,7,8,9-HpCDF	89.4	40 - 135	
OCDF	100	99.0	70 - 130	13C-OCDF	88.7	40 - 135	
				CRS 37CI-2,3,7,8-TCDD	107	40 - 135	

Approved By:

Calvin Tanaka 03-Jul-2012 12:31

Sample ID: MGA12	MGA12061524-01A						EPAT	EPA Method 8290
ı			Sample Data		Laboratory Data			
Ybhg You	Alpha Analytical, Inc.		Matrix:	Soil	Lab Sample:	33838-001	Date Received:	16-Jun-12
13-Jun-12	n-12		Sample Size: %Solids:	10.9 g 92.7	QC Batch No.: Date Analyzed DB-5:	4511 29-Jun-12	Date Extracted: Date Analyzed DB-225:	21-Jun-12 NA
	Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard	lard	%R LCL-UCL ^d	Oualifiers
	ND	0.0810			<u>IS</u> 13C-2,3,7,8-TCDD	QQ	95.6 40 - 135	
	ND	0.0937			13C-1,2,3,7,8-PeCDD	eCDD		MAY III. ALL III. 1900 MAIN LANK AVANALIMAN
1,2,3,4,7,8-HxCDD	A	0.0731			13C-1,2,3,4,7,8-HxCDD	HXCDD	85.5 40 - 135	
,2,3,6,7,8-HxCDD	0.287			J	13C-1,2,3,6,7,8-HxCDD	.HxCDD	90.6 40 - 135	
,2,3,7,8,9-HxCDD	0.199			h	13C-1,2,3,7,8,9-HxCDD	HxCDD	85.8 40 - 135	
1,2,3,4,6,7,8-HpCDD	5.95				13C-1,2,3,4,6,7,8-HpCDD	8-HpCDD	89.7 40 - 135	
	43.9				13C-0CDD		84.7 40 - 135	
	ND	0.121			13C-2,3,7,8-TCDF	DF	92.3 40 - 135	
	Ä	0.0683			13C-1,2,3,7,8-PeCDF	eCDF	108 40 - 135	
	0.138			ŕ	13C-2,3,4,7,8-PeCDF	eCDF	105 40 - 135	
1,2,3,4,7,8-HxCDF	0.0871			5	13C-1,2,3,4,7,8-HxCDF	HxCDF	93.5 40-135	
	0.0892			J	13C-1,2,3,6,7,8-HxCDF	HxCDF	98.3 40 - 135	
2,3,4,6,7,8-HxCDF	0.0887			Ħ	13C-2,3,4,6,7,8-HxCDF	HxCDF	92.8 40-135	
,2,3,7,8,9-HxCDF	ND	0.102			13C-1,2,3,7,8,9-HxCDF	HxCDF	92.3 40 - 135	
1,2,3,4,6,7,8-HpCDF	0.423			-	13C-1,2,3,4,6,7,8-HpCDF	8-HpCDF	91.5 40-135	
,2,3,4,7,8,9-HpCDF	ND	0.0656			13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	89.0 40 - 135	
	1.33			ĵ	13C-0CDF		88.3 40 - 135	
				_ •	CRS 37CI-2,3,7,8-TCDD	(DD	103 40 - 135	
					Toxic Equivalent Quotient (TEQ) Data	uotient (TEQ) Da	ıta e	
	P	0.0810			TEQ (Min):	0.194		
	0.152					**************************************		
	2.48		2.65		a. Sample specific estimated detection limit.	d detection limit		
5	16.0	500000000000000000000000000000000000000			b. Estimated maximum possible concentration	sible concentration.		
	0.164				c. Method detection limit.			
	1.16		1.25		d. Lower control limit - upper control limit.	per control limit.		
	1,10				e. TEQ based on (2005) W	orld Health Organizatic	e. TEQ based on (2005) World Health Organization Toxic Equivalent Factors (WHO)	WHO)
	1.01				The results are reported in	dry weight. The sample	The results are reported in dry weight. The sample size is reported in wet weight.	
					Approved By:	Calvin Tanaka	03-Int-2012 12-31	
					. f	Calvill Lallana		

Sample ID: MGA12061524-05A	1524-05A					EPAN	EPA Method 8290
Data		Sample Data		Laboratory Data			
Name: Alpha Analytics Project: MGA 12061524	Alpha Analytical, Inc. MGA 12061524	Matrix:	Soil	Lab Sample:	33838-002	Date Received:	16-Jun-12
Hected:	2	Sample Size:	10.4 g	QC Batch No.:	4511	Date Extracted:	21-Jun-12
	(2)24)	%Solids:	27.76	Date Analyzed DB-3:	29-Jun-12	g	NA
	(pg/g)	EMFC	Qualifiers	Labeled Standard	rd	%R LCL-UCL	Oualifiers
2,3,7,8-TCDD ND	D 0.0596			IS 13C-2,3,7,8-TCDD	٥	94.9 40 - 135	
	D 0.0707	000000000000000000000000000000000000000		13C-1,2,3,7,8-PeCDD	CDD	97.0 40 - 135	
1,2,3,4,7,8-HxCDD ND	D 0.0785			13C-1,2,3,4,7,8-HxCDD	хСDD	85.4 40 - 135	
_	0.0874	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13C-1,2,3,6,7,8-HxCDD	xCDD	92.2 40 - 135	
	0.0922			13C-1,2,3,7,8,9-HxCDD	хСDD	86.5 40 - 135	
6,7,8-HpCDD	33		ſ	13C-1,2,3,4,6,7,8-HpCDE	НрСDD	90.9 40 - 135	
	10			13C-OCDD		87.5 40 - 135	
	0,0847			13C-2,3,7,8-TCDF	ſŢ,	94.1 40 - 135	
1,2,3,7,8-PeCDF ND	0.0542			13C-1,2,3,7,8-PeCDF	ÜF	111 40-135	
	0.0565			13C-2,3,4,7,8-PeCDF	'DF	105 40 - 135	
	0.0418			13C-1,2,3,4,7,8-HxCDF	xCDF	92,9 40 - 135	
1,2,3,6,7,8-HxCDF ND	0.0416		:	13C-1,2,3,6,7,8-HxCDF	xCDF		- Course with NACO Administration common con-
2,3,4,6,7,8-HxCDF ND	0.0484			13C-2,3,4,6,7,8-HxCDF	xCDF	93.2 40 - 135	
	0.0644			13C-1,2,3,7,8,9-HxCDF	xCDF	91.8 40 - 135	
1,2,3,4,6,7,8-HpCDF 0.13:	33		•	13C-1,2,3,4,6,7,8-HpCDF	HpCDF	91.0 40 - 135	
1,2,3,4,7,8,9-HpCDF ND	0.0705			13C-1,2,3,4,7,8,9-HpCDF	HpCDF		
0.316	91		ſ	13C-OCDF	6 (3)	91.0 40-135	
				CRS 37CI-2,3,7,8-TCDD	D	105 40 - 135	
Totals				Toxic Equivalent Quotient (TEQ) Data	tient (TEQ) Da	ta e	
Total TCDD ND	0.0596			TEO (Min): 0.0	0.0173		
Total PeCDD ND	0.0707			VA ATTION AND ATTIONS OF THE ATTIONS			
Total HxCDD 0.258	58			a. Sample specific estimated detection limit.	letection limit.		
Total HpCDD 2.68	81			b. Estimated maximum possible concentration	le concentration.		
Total TCDF ND	0.0847			c. Method detection limit.			
Total PeCDF 0.190	06	0.320		d. Lower control limit - upper control limit.	control limit.		
Total HxCDF 0.110	01	0.243		e. TEQ based on (2005) World Health Organization Toxic Equivalent Factors (WHO)	d Health Organizatic	n Toxic Equivalent Factors.(N	(оно)
Total HpCDF 0.305	05			The results are reported in dry weight. The sample size is reported in wet weight.	weight. The sample	size is reported in wet weight	
The state of the s							

Calvin Tanaka 03-Jul-2012 12:31

Approved By:

MGA12061524-12A						EPAN	EPA Method 8290
Ţ		Sample Data		Laboratory Data			
Alpha Analytical, Inc.		Matrix:	Soil	Lab Sample:	33838-003	Date Received:	16-Jun-12
MCA12001324 13-Jun-12 1488		Sample Size: %Solids:	10.8 g 92 9	QC Batch No.: Date Analyzed DB-5:	4511 29-1-112	Date Extracted: Date Analyzed DB-225:	21-Jun-12
Conc. (pg/g)	DL a	EMPC ^b	Qualifiers	Labeled Standard	ard	%R LCL-UCL ^d	Qualifiers
M	0.0959			<u>IS</u> 13C-2,3,7,8-TCDD	OD	97.7 40 - 135	
0.101			ľ	13C-1,2,3,7,8-PeCDD	CDD		
1,2,3,4,7,8-HxCDD 0.192			F.	13C-1,2,3,4,7,8-HxCDD	НхСDD	89.5 40 - 135	
1,2,3,6,7,8-HxCDD 1.12			ſ	13C-1,2,3,6,7,8-HxCDD	HxCDD	93.5 40 - 135	
1,2,3,7,8,9-HxCDD 0.506			ſ	13C-1,2,3,7,8,9-HxCDD	НхСDD	87.9 40 - 135	
1,2,3,4,6,7,8-HpCDD 19.1				13C-1,2,3,4,6,7,8-HpCDD	8-НрСDD	94.1 40 - 135	
105				13C-OCDD		88.1 40-135	
ND	0.0964			13C-2,3,7,8-TCDF)F	94.3 40 - 135	
ŊD	0.0433			13C-1,2,3,7,8-PeCDF	CDF	112 40 - 135	
0.213			•	13C-2,3,4,7,8-PeCDF	CDF	108 40 - 135	
,2,3,4,7,8-HxCDF 0.0821				13C-1,2,3,4,7,8-HxCDF	HXCDF	96.3 40 - 135	
,2,3,6,7,8-HxCDF 0.0994			ſ	13C-1,2,3,6,7,8-HxCDF	HxCDF	101 40 - 135	
2,3,4,6,7,8-HxCDF 0.165				13C-2,3,4,6,7,8-HxCDF	HxCDF	96.5 40 - 135	
	0.0849			13C-1,2,3,7,8,9-HxCDF	HxCDF	97.7 40 - 135	
,2,3,4,6,7,8-HpCDF 0.614			.	13C-1,2,3,4,6,7,8-HpCDF	8-HpCDF	95.3 40 - 135	
,2,3,4,7,8,9-HpCDF 0.0713			٠	13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	93.6 40 - 135	
41.1			-	13C-OCDF		92.6 40 - 135	
				CRS 37CI-2,3,7,8-TCDD	DD	107 40 - 135	
				Toxic Equivalent Quotient (TEQ) Data	otient (TEQ) Da	ıta e	
M	0.0959			TEQ (Min): 0	0.611		
0.207		0.313					
7.37				a. Sample specific estimated detection limit.	d detection limit.		
36.5				b. Estimated maximum possible concentration	sible concentration.		
1,66				c. Method detection limit.			
3.02		3.11		d. Lower control limit - upper control limit.	er control limit.		
2.28				e. TEQ based on (2005) Wo	orld Health Organization	e. TEQ based on (2005) World Health Organization Toxic Equivalent Factors (WHO)	мно)
1.75				The results are reported in c	Iry weight. The sample	The results are reported in dry weight. The sample size is reported in wet weight.	if.
					,		

Calvin Tanaka 03-Jul-2012 12:31

Approved By:

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H Recovery was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	CA00413
Alabama Dept of Environmental Management	41610
Arizona Department Of Health Services	AZ0639
Arkansas Dept of Environmental Quality	11-035-0
California Dept of Health – NELAP	02102CA
Colorado Dept of Public Health & Environment	N/A
Connecticut Dept of Public Health	PH-0182
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Dept of Health	E87777
Indiana Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Louisiana Department of Health and Hospitals	LA110017
Maine Department of Health	2010021
Michigan Department of Natural Resources	9932
Mississippi Department of Health	N/A
Nevada Division of Environmental Protection	CA004132011-1
New Jersey Dept of Environmental Protection	CA003
New York Department of Health	11411
North Carolina Dept of Health & Human Services	06700
North Dakota Dept of Health	R-078
Oklahoma Dept of Environmental Quality	2011-120
Oregon Laboratory Accreditation Program	CA200001
Pennsylvania Dept of Environmental Protection	68-00490
South Carolina Dept of Health	87002001
Tennessee Dept of Environment and Conservation	TN02996
Texas Commission on Environmental Quality	T104704189-11-2
Utah Dept of Health	CA16400
Virginia Dept of General Services	00013
Washington Department of Ecology	C584
Wisconsin Dept of Natural Resources	998036160

Project 33838 Page 11 of 14

Alpha Analytical, Inc.

255 Glendale Avenue Suite 21

Sparks, Nevada 89431-5778

(775) 355-0406 Phone: (775) 355-1044

Subconfractor.

Vista Analytical Laboratory 1104 Windfield Way

SECHMINET STORY TO SECOND

Work Order: MGA12061524

*Please reference the Work Order number on all reports and invoices. *Also please include the dates of analysis and detection limits. Attention To Reyna Vallejo (reyna@alpha-analytical.com), Please send the report to Alpha Analytical (Sparks).

32828 1.2°C Page of Report Due By: 5:00 PM

On: 17-Jul-12

Required QC:

Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Sampled by : Brett Bottenberg

15-Jun-12

El Dorado Hills, CA 95762

Acct #:

FAX:

(916) 673-1520 (916) 673-0106

Sample Comments Requested Tests EPA Method SW8290 Dioxins 80ZCG-U (1) 80ZCG-U Type (#) of Bottles Preserved Collection 10:00 06/13/12 11:10 Date Š Soil Client's Sample ID LVBRN014-SP-04 LVBRN014-SP-01 Alpha's Sample ID MGA12061524-01A MGA12061524-05A

Dioxins

80ZCG-U (1)

06/13/12

Soil

LVBRN014-SS-11

MGA12061524-12A

Comments:

Standard TAT.

Relinquished by:

Relinquished by:

10/1 1/2 - 10/2 Received by:

Date/Time

Received by:

<u>2</u> 5 Date/Time

Alpha Analytical, Inc.

Phone: (775) 355-1044 FAX: (775) 355-0406

Subcontract Sample Receipt Checklist

Date Report is due at Alpha: 17-Jul-12

Date of Notice: 6/15/2012 12:52:22

If any items are checkmarked NO or are non-compliant, a phone call back to Alpha Analytical is required immediately. If all items are acceptable, a faxed copy of the signed sub chain of custody (COC) and the completed sample receipt check list is required within 24 hours of sample receipt.

Alpha's Work Order Number : MGA12061524 SubConf	ract Work Order Number :	Date Received : 6/16/13
Carrier name Fed Ex	ain of Custody (COC) Inform	nation
Chain of custody present ?	Yes 🗹	■ No
Custody seals intact on shippping container/cooler?	Yes 🔽	No Not Presen
Custody seals intact on sample bottles?	Yes 🗹	No Not Presen
Chain of custody signed when relinquished and received	? Yes 🗹	No No
Chain of custody agrees with sample labels?	Yes 🗹	Non-Compliant
Internal Chain of Custody (COC) requseted ?	Yes 🗵	No
	Sample Receipt Information	20
Shipping container/cooler in good condition?	Yes 🗹	No Not Presen
Samples in proper container/bottle?	Yes 🗹	Non-Compliant
Sample containers intact?	Yes 🗹	■ No
Sufficient sample volume for indicated test?	Yes 🗹	₩ No
Sample Pre	servation and Hold Time (H	T) Information
All samples received within holding time?	Yes 🖭	Non-Compliant
Cooler Temperature : 1.2°C Is Wet Ice present in	Cooler? Yes If YES	S, then temperature is 4°C.
	No 🗏 If NO	, then actual cooler temperature is :°C
	Analytical Requirement Info	rmation
Are non-Standard or Modified methods requested?	Yes 🔲	No.
SubContract Lab NV STATE certified?	Yes 🖭	NO CT WIBIT
SubContract Lab NELAP certified?	Yes 🖭	TO NO CA Wiele
SubContract Lab CERTIFIED for the various methods r	equested Yes	No CT WHOLIZ
Will the SubContract Lab be able to meet the turn-around (TAT) requirements?	und time Yes	No CT shehr

Comments:

SAMPLE LOG-IN CHECKLIST

Vista Project #:	3383	<u> </u>			TAT	<u>Std</u>	*
	Date/Time		Initials:		Location	: WR	2-2-
Samples Arrival:	6/16/12	0910	A		Shelf/Ra	ck: <u> </u>	VA_
Logged In:	Date/Time	0814	Initials:	Ь	Location Shelf/Ra	Wr.	(-) (-)
Delivered By:	(FedEx)	UPS	On Trac	DHL	Hand		Other
Preservation:	(lce)	Blue Ice	Dr	y Ice		None
Temp °C (.2	9	Time: (09/2		Thermon	neter II	D: IR-1

					YES	NO	NA
Adequate Sample Volume Rece	ived?				/		
Holding Time Acceptable?							
Shipping Container(s) Intact?							
Shipping Custody Seals Intact?					~		
Shipping Documentation Presen	t?						
Airbill Trk# 4	809 35	52 193			'		
Sample Container Intact?					1		
Sample Custody Seals Intact?		Martina and Control of the Control o			/		
Chain of Custody / Sample Docu	ımentation F	Present?					
COC Anomaly/Sample Acceptar	nce Form co	mpleted?				V	
If Chlorinated or Drinking Water	Samples, Ad	cceptable Pres	ervation?				
Na ₂ S ₂ O ₃ Preservation Document	ted? N/A	coc	4	ample intainer		None	
Shipping Container	Vista	Client	Retain	/Rei	turn	Disp	ose
Comments:		\					***************************************

MGA 12061524-01A MGA 12061524-05A MGA 12061524-12A

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number EMail Address

(702) 260-4961 x 7003 bbottenberg@mcgin.com

Brett Bottenberg

Client:

McGinley & Associates

6280 S. Valley View Blvd

Ste 604

<

WorkOrder: MGAL12061524

Page: 1 of 4

Report Due By: 5:00 PM On: 21-Jun-12

EDD Required: Yes

Sampled by: Brett Bottenberg

Cooler Temp Samples Received

Client's COC #: 54655, 54656

Job: LVRRN014/Lackawanna Mill

Las Vegas, NV 89118

15-Jun-12 Date Printed 15-Jun-12

MGA12061524-10A LVBRN014-SS-09 MGA12061524-04A EQUIP. BLANK Sample ID MGA12061524-09A LVBRN014-SS-08 MGA12061524-08A LVBRN014-SS-07 MGA12061524-07A LVBRN014-SS-06 MGA12061524-06A LVBRN014-SS-05 MGA12061524-05A LVBRN014-SP-04 MGA12061524-03A LVBRN014-SS-03 MGA12061524-02A LVBRN014-SS-02 MGA12061524-01A LVBRN014-SP-01 QC Level: S3 Sample ID Final Rpt, MBLK, LCS, MS/MSD With Surrogates SO S SO SO S S So S å SO Matrix Date 06/13/12 10:00 06/13/12 12:40 06/13/12 12:20 06/13/12 12:05 06/13/12 11:55 06/13/12 11:10 06/13/12 11:20 06/13/12 06/13/12 10:40 Collection No. of Bottles 06/13/12 11:40 Alpha Sub N ယ N ω N Δ 4 ω 0 0 0 0 0 ΤAΤ 4 4 4 4 4 4 4 4 4 8082 S 8082 8082 8082 8082 8082 CYANIDE_T DIOXIN_FU METALS_A METALS_S P_MOIST Total Cyanide Total Cyanide Total Cyanide Dioxins Dioxins CAM_17_TT LC Requested Tests CAM_17_TT LC CAM_17_TT LC CAM_17_TT LC CAM_17_TT LC CAM_17_TT LC CAM_17_TT CAM_17_TT LC CAM_17_TT LC CAM_17_TT LC Percent Moisture PH_S μ PΗ Ηď рH μq Ħ pН ΡH PNA_SIM_S SIM MIS MIS SIM SIM MIS SIM MIS MIS Sample Remarks

Comments:

Security seals intact. Frozen ice. Dioxins by 8290 subbed to Vista Analytical on standard 21 day TAT, due 7/17/12. Total Cyanide subbed to SEM. Trip Blank added to chain by lab and logged in for 8260, per Brett. Report CAM 17 in dry weight.

Logged in by:	
Klunay	Signature
Kminny	Print Name
Alpha Analytical, Inc.	Company
6/15/12 1350	Date/Time

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number EMail Address

(702) 260-4961 x 7003 bbottenberg@mcgin.com

Brett Bottenberg

Las Vegas, NV 89118 Ste 604 McGinley & Associates

6280 S. Valley View Blvd

Client's COC #: 54655, 54656

Job: LVRRN014/Lackawanna Mill

Page: 2 of 4

WorkOrder: MGAL12061524

Report Due By: 5:00 PM On: 21-Jun-12

EDD Required: Yes

Sampled by: Brett Bottenberg

Cooler Temp Samples Received 15-Jun-12 Date Printed 15-Jun-12

										Reques	Requested Tests				
Alpha	Client	:	Collection		No. of Bottles		8082_S	CYANIDE_T DIOXIN_FL	DIOXIN_FU	METALS_A	METALS_A METALS_S P_MOIST	P_MOIST	PH_S	PNA_SIM_S	
Sample ID	Sample ID	Matr	Matrix Date	Alpha	Sub	TAT		OTAL	RAN_S	۵	0				Sample Remarks
MGA12061524-11A LVBRN014-SP-10	LVBRN014-SP-10	SO	06/13/12 12:50	20	0	4			70 y 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CAM_17_TT LC	Percent Moisture	pH	MIS	
MGA12061524-12A LVBRN014-SS-11	LVBRN014-SS-11	so	06/13/12 14:55	ω	_	4	8082		Dioxins		CAM_17_TT LC	Percent Moisture	рH	MIS	
MGA12061524-13A LVBRN014-SS-12	LVBRN014-SS-12	SO	06/13/12 15:10	N	0	4					CAM_17_TT LC	Percent Moisture	рH	MIS	Jars received with no sample ID, date or time. Matched up by process of elimination.
MGA12061524-14A LVBRN014-SS-13	LVBRN014-SS-13	so	06/13/12 15:25	ယ	0	4	8082				CAM_17_TT LC	Percent Moisture	Нď	MIS	
MGA12061524-15A LVBRN014-SS-14	LVBRN014-SS-14	SO	06/13/12 15:35	ယ	0	4					CAM_17_TT LC	Percent Moisture	pН	MIS	
MGA12061524-16A LVBRN014-SS-15	LVBRN014-SS-15	so	06/13/12 16:10	ω	0	4	8082				CAM_17_TT	Percent Moisture	pH	MIS	
MGA12061524-17A	LVBRN014-SS-16	So	06/13/12 16:20	ယ	0	4	8082				CAM_17_TT LC	Percent Moisture	рН	MIS	
MGA12061524-18A Trip Blank	Trip Blank	ĄQ	06/13/12 00:00		0	4									Client provided Trip Blank

Logged in by: muren **Print Name** Alpha Analytical, Inc. Company 6/15/12/1300 Date/Time

Comments:

for 8260, per Brett. Report CAM 17 in dry weight.:

Security seals intact. Frozen ice. Dioxins by 8290 subbed to Vista Analytical on standard 21 day TAT, due 7/17/12. Total Cyanide subbed to SEM. Trip Blank added to chain by lab and logged in

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406 Phone Number EMail Address

Report Attention Brett Bottenberg (702) 260-4961 x 7003 bbottenberg@mcgin.com

McGinley & Associates

6280 S. Valley View Blvd

Client's COC #: 54655, 54656

Job: LVRRN014/Lackawanna Mill

Las Vegas, NV 89118

Z

Page: 3 of 4

Report Due By: 5:00 PM On: 21-Jun-12 WorkOrder: MGAL12061524

EDD Required: Yes

Sampled by: Brett Bottenberg Cooler Temp

Samples Received 15-Jun-12 Date Printed 15-Jun-12

Sample ID MGA12061524-09A LVBRN014-SS-08 MGA12061524-08A LVBRN014-SS-07 MGA12061524-04A EQUIP. BLANK MGA12061524-01A LVBRN014-SP-01 QC Level: S3 MGA12061524-10A LVBRN014-SS-09 MGA12061524-07A LVBRN014-SS-06 MGA12061524-06A LVBRN014-SS-05 MGA12061524-05A LVBRN014-SP-04 MGA12061524-02A LVBRN014-SS-02 MGA12061524-03A LVBRN014-SS-03 Sample ID Final Rpt, MBLK, LCS, MS/MSD With Surrogates SO 06/13/12 10:00 S SO SO S SO SO S å SO Matrix Date 06/13/12 11:05 06/13/12 12:40 06/13/12 12:20 06/13/12 10:40 06/13/12 12:05 06/13/12 11:55 06/13/12 11:10 06/13/12 11:20 06/13/12 Collection No. of Bottles 11:40 Alpha Sub ယ N ယ N 4 4 4 ω 0 0 0 0 0 TAT 4 4 4 4 4 8260_Ns 8260_Ns VOC_S VOC_W 8260_Ns Requested Tests Sample Remarks

Logged in by: Kumay Comments:

Security seals intact. Frozen ice. Dioxins by 8290 subbed to Vista Analytical on standard 21 day TAT, due 7/17/12. Total Cyanide subbed to SEM. Trip Blank added to chain by lab and logged in for 8260, per Brett. Report CAM 17 in dry weight.: **Print Name** Alpha Analytical, Inc. Company 6/15/12 1350 Date/Time

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Brett Bottenberg Phone Number

McGinley & Associates 6280 S. Valley View Blvd

EMail Address

(702) 260-4961 x 7003 bbottenberg@mcgin.com

Page: 4 of 4

WorkOrder: MGAL12061524

Report Due By: 5:00 PM On: 21-Jun-12

EDD Required: Yes

Sampled by: Brett Bottenberg Cooler Temp Samples Received 15-Jun-12 Date Printed 15-Jun-12

Client's COC #: 54655, 54656

Las Vegas, NV 89118

Ste 604

QC Level: S3

Final Rpt, MBLK, LCS, MS/MSD With Surrogates

LVRRN014/Lackawanna Mill

									Keq	Requested lests		
Alpha	Client		Collection No. of Bottles	No. of	Bottles		VOC_S	VOC_W				
Sample ID	Sample ID	Matrix	Matrix Date	Alpha	Alpha Sub 1	TAT					 San	Sample Remarks
MGA12061524-11A LVBRN014-SP-10	LVBRN014-SP-10	so	06/13/12 12:50	2	0	4						
MGA12061524-12A LVBRN014-SS-11	LVBRN014-SS-11	SO	06/13/12 14:55	ω	_	4						
MGA12061524-13A LVBRN014-SS-12	LVBRN014-SS-12	SO	06/13/12 15:10	8	0	4					 Jars r sample	Jars received with no sample ID, date or time.
MGA12061524-14A LVBRN014-SS-13	LVBRN014-SS-13	so	06/13/12	ယ	0	4			7,000			GillingaOil.
MCA10061E0A 1EA	I VIDENION OF AN		02/40/40	י	>	-	_		-			
MGA12061524-15A LVBRN014-SS-14	LVBRN014-SS-14	SO	06/13/12 15:35	ω	0	4						To produce of the second secon
MGA12061524-16A	LVBRN014-SS-15	SO	06/13/12 16:10	ယ	0	4		7 900				
MGA12061524-17A LVBRN014-SS-16	LVBRN014-SS-16	SO	06/13/12 16:20	ω	0	4						
MGA12061524-18A Trip Blank	Trip Blank	ĄQ	06/13/12 00:00	_	0	4		8260_Ns			Client p	Client provided Trip Blank

Comments:

Security seals intact. Frozen ice. Dioxins by 8290 subbed to Vista Analytical on standard 21 day TAT, due 7/17/12. Total Cyanide subbed to SEM. Trip Blank added to chain by lab and logged in for 8260, per Brett. Report CAM 17 in dry weight.

	Logged in by:	
, ,	K Mureu	Signature
	Kmian	Print Name
	Alpha Analytical, Inc.	Company
- though	6/15/12 1350	Date/Time

Alpha Analytical, Inc.

Phone: (775) 355-1044 FAX: (775) 355-0406

Date Report is due to Client: 6/21/2012

Sample Receipt Checklist

Date of Notice: 6/15/2012 1:51:24 PM

Please take note of any NO check marks. If we receive no response concerning these items within 24 hours of the date of this notice, all of the samples will be analyzed as requested.

Client Name: McGinley & Associates	Project ID:	LVRRN014/L	ackawanna	Mill	
Project Manager: Brett Bottenberg	Client's EMail: Client's Phone:				X: (702) 260-4968
Work Order Number: MGA12061524	Date Received				by: Kathryn Murray
Chai	n of Custody (C	OC) Informati	<u>on</u>		
Carrier name OnTrac					
Chain of custody present ?	Yes 🖢		No		
Custody seals intact on shippping container/cooler?	Yes 🖢		No No	Present	
Custody seals intact on sample bottles ?	Yes 🛚		No No	t Present	
Chain of custody signed when relinquished and received ?	Yes 🖢		No		
Chain of custody agrees with sample labels?	Yes 🖢		No		
Sample ID noted by Client on COC ?	Yes 🖢		No		
Date and time of collection noted by Client on COC ?	Yes 🖢		No		
Samplers's name noted on COC ?	Yes 🖢		No		
Internal Chain of Custody (COC) requested ?	Yes [No		
Sub Contract Lab Used :	None [See Comm	ents	
<u>\$</u>	Sample Receipt	<u>Information</u>			
Shipping container/cooler in good condition?	Yes 🖪		No No	t Present	
Samples in proper container/bottle?	Yes 🛚		No		
Sample containers intact?	Yes 🛚		No		
Sufficient sample volume for indicated test?	Yes 🖢		No		
Sample Prese	ervation and Ho	ld Time (HT) I	nformation		
All samples received within holding time?	Yes		No		Cooler Temperature
Container/Temp Blank temperature in compliance (0-6°C)?	Yes		No		0 °C
Samples arrived in a timely manner?	Yes		No		
Client attempted to be contacted?	Yes		No If Y	ES : see Comm	nents
Water - VOA vials have zero headspace / no bubbles?	Yes		No N/	A D No \	/OA vials submitted
Sample labels checked for correct preservation?	Yes		No		
TOC Water - pH acceptable upon receipt (H2SO4 pH<2)?	Yes		No N/A	V	
Are NV non-SDWA 314 samples field filtered (0.2µ)?	Yes [No N/	A 🗹	
Ana	lytical Requirem	ent Informati	<u>on</u>		
Are non-Standard or Modified methods requested?	Yes	✓	No		
Are there client specific Project requirements?	Yes [No If Y	ES : see the C	hain of Custody (COC)
Is this a Drinking Water regulatory sample ?	Yes [No		
Comments: For 13A: Jars received with no sample ID, da Analytical on standard 21 day TAT, due 7/17, 8260, per Brett.	ite or time. Match /12. Total Cyanic	ned up by proc le subbed to S	ess of elimir EM. Trip Bla	nation. Dioxins ink added to ch	by 8290 subbed to Vista ain by lab and logged in for

Company Name _ Billing Information:

Company Name MCharles & Associated	` ■	Alpha Analytical, Inc.	ples Collected From Which Su	VA DOD Site
o Si vancy vi	(0) Post	-5778	OTHER	Page #of
Phone Number (101) 260-491/ Fax (761) 60-	1964		Analyses Required	
Consultant / Client Name	oc LIGNANOIA 400L	KAWANNA MIN	10/20/20/	Level: III or IV
Some As Mour	Report Attention / Project Manager Name: おんさい もっかん かんけん		824 600 327 608	
City, State, Zip	bbottenburg @	. Com	19/17/8/82	EDD / EDF? YES 📐 NO
Date Matrix* P.O. #	Phone: Mobile:	OKM	PH NOC.	Global ID#
Sampled Sampled Below Lab ID Number (Use Only)	Sample Description	TAT Filtered # Containers** / S	CA 5/ Va/ P/ C/	REMARKS
1000613 SO MEAIZOGISZY-01 L	1080014-SP-01	35 ×	メメメ	
1040 613 80 02	55-02	35	х х х	
110561350	V 55-03		X	
11201613 100 04	EDWIP BUNIT	340%	×	
65	WBRNOIY-SP-CH	35 ×	× ×	
1140 P13 CO Brown 06	- 55-05	St St	× × × ×	
115 6/13 50 07	-55-06	35	XXX	
613 50	-55-07	3	XXXXX	
VI 3 V 10 10 10 10 10 10 10 10 10 10 10 10 10		3 0	X	
1350 6/3 50	- 50.10	3	<	
14556/13/50	11-55-	×	× × × ×	
1510 6/13 50 13	-55-12	25	XXX	
ADDITIONAL INSTRUCTIONS:				4.
I, (field sampler), attest to the validity and authentify of grounds for legal action. Sampled By:	His sample am aware that tampering with or	intentionally mislabeling the sample k	re that tampering with or intentionally mislabeling the sample location, date or time of collection is considered fraud and may be	sidered fraud and may be
Relinguished by: (Signature/Affiliation)	Mont Received by: (Signatur) A	Affiliation + TLPHA	6-14-12 Date -14.12	_ Time: 3.36
Reignquished by: (Signature/Affiliatoff)	Received by: (Signature/Affil/	Milder AM	Date: 6/15/12	Time: /2/S
	Received by: (Signature/Affiliation)	ffliation)	Date:	Time:
*Key: AQ - Aqueous SO - Soil WA - Waste	OT - Other AR - Air **: L-Liter	er V-Voa S-Soil Jar O-C	O-Orbo T-Tedlar B-Brass P-I	P-Plastic OT-Other
NOIE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis	ported unless other arrangements are made.	Hazardous samples will be returned	to client or disposed of at client expense	 The report for the analysis

of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report. NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis *Key: AQ - Aqueous SO - Soil WA - Waste OT - Other AR - Air **: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic