November 27, 2006

Re. **BMI Plant Sites and Common Areas Projects, Henderson, Nevada**
NDEP Review of Human Health Toxicological Criteria, DMPT, DEPT dated November 1, 2006
Submitted by PES Environmental on behalf of Syngenta Crop Protection

Dear Sirs and Madam:

Attachment A contains the NDEP’s comments on the subject document. Please incorporate these changes and submit the finalized document.

If you have any questions, do not hesitate to contact me.

Sincerely,

Brian A. Rakvica, P.E.
Supervisor, Special Projects Branch
Bureau of Corrective Actions

BAR:s
CC:

Jim Najima, NDEP, BCA, Carson City
Marysia Skorska, NDEP, BCA, Las Vegas
Shannon Harbour, NDEP, BCA, Las Vegas
Barry Conaty, Akin, Gump, Strauss, Hauer & Feld, L.L.P., 1333 New Hampshire Avenue, N.W.,
Washington, D.C. 20036
Brenda Pohlmann, City of Henderson, PO Box 95050, Henderson, NV 89009
Mitch Kaplan, U.S. Environmental Protection Agency, Region 9, mail code: WST-5,
75 Hawthorne Street, San Francisco, CA 94105-3901
Rob Mrowka, Clark County Comprehensive Planning, PO Box 551741, Las Vegas, NV, 89155-1741
Ranajit Sahu, BRC, 311 North Story Place, Alhambra, CA 91801
Rick Kellogg, BRC, 875 West Warm Springs, Henderson, NV 89011
Craig Wilkinson, TIMET, PO Box 2128, Henderson, Nevada, 89009-7003
Kirk Stowers, Broadbent & Associates, 8 West Pacific Avenue, Henderson, Nevada 89015
George Crouse, Syngenta Crop Protection, Inc., 410 Swing Road, Greensboro, NC 27409
Susan Crowley, Tronox, PO Box 55, Henderson, Nevada 89009
Keith Bailey, Tronox, Inc, PO Box 268859, Oklahoma City, Oklahoma 73126-8859
Sally Bilodeau, ENSR, 1220 Avenida Acaso, Camarillo, CA 93012-8727
Lee Erickson, Stauffer Management Company, 400 Ridge Rd, Golden, CO 80403
Chris Sylvia, Pioneer Americas LLC, PO Box 86, Henderson, Nevada 89009
Paul Sundberg, Montrose Chemical Corporation, 3846 Estate Drive, Stockton, California 95209
Joe Kelly, Montrose Chemical Corporation of CA, 600 Ericksen Avenue NE, Suite 380,
Bainbridge Island, WA 98110
Jon Erskine, Northgate Environmental Management, Inc., 300 Frank H. Ogawa Plaza, Suite 510, Oakland, CA 94612
Deni Chambers, Northgate Environmental Management, Inc., 300 Frank H. Ogawa Plaza, Suite 510, Oakland, CA 94612
Robert Infelise, Cox Castle Nicholson, 555 Montgomery Street, Suite 1500, San Francisco, CA 94111
John Yturri, Centex Homes, 3606 North Rancho Drive, Suite 102, Las Vegas, NV 89130
Michael Ford, Bryan Cave, One Renaissance Square, Two North Central Avenue, Suite 2200, Phoenix, AZ 85004
Vincent Aiello, Beazer Homes, 4670 South Fort Apache, Suite 200, Las Vegas, NV
Paul Black, Neptune and Company, Inc., 8550 West 14th Street, Suite 100, Lakewood, CO 80215
Teri Copeland, 5737 Kanan Rd., #182, Agoura Hills, CA 91301
Based on discussions between NDEP and Syngenta, Syngenta evaluated the identification of appropriate toxicological surrogates for the following chemicals:

- dimethyl phosphorodithioate (DMPT) (CASRN 756-80-9) and
- diethyl phosphorodithioate (DEPT) (CASRN 298-06-6).

The document was prepared in response to this discussion and contains the following components:

- A review of the acetylcholinesterase (AChE) inhibition potential of DMPT and DEPT;
- A review of available toxicity data for DMPT and DEPT;
- Identification of proposed toxicological surrogates; and
- Identification of proposed toxicity criteria for DMPT and DEPT based on the proposed toxicological surrogates.

Our comments regarding each of the document components are provided below.

I. AChE Inhibition Potency of DMPT and DEPT

The document provides adequate documentation that AChE inhibition is not a significant or relevant toxicological endpoint for DMPT and DEPT.

II. Identification of Toxicological Surrogates for DMPT and DEPT

Based on structural similarity, physical/chemical properties, and the availability of chronic toxicity data, the aforementioned document identified the following toxicological surrogates:

<table>
<thead>
<tr>
<th>Chemical Requiring Surrogate</th>
<th>Toxicological Surrogate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMPT (dimethyl phosphorodithioate)</td>
<td>Isopropyl methyl phosphonic acid (IMPA)</td>
</tr>
<tr>
<td>DEPT (diethyl phosphorodithioate)</td>
<td>Diisopropyl methyl phosphonate (DIMP)</td>
</tr>
</tbody>
</table>

Although other candidates were not considered in the document, the selection of DIMP and IMPA as surrogates is reasonable based on structural similarity and the availability of USEPA oral reference doses for these chemicals. We concur with the selection of DIMP as the toxicological surrogate for DMPT and the selection of IMPA as a toxicological surrogate for DEPT.

Please note that the structure presented for IMPA in Table 2 (p. 13) is not consistent with the structure identified in the Merck Index (2006), which was our source for structure confirmation. The structure identified in the Merck Index is attached to this letter as Attachment B. If the NDEP’s assumption is not correct this issue will require further discussion. If the NDEP’s assumption is correct the finalized document should be corrected.
III. Identification of Toxicity Criteria for DMPT and DEPT

Based on structural similarity, (limited) information regarding toxicity, and information contained in USEPA’s IRIS data base (USEPA, 2006) and in the ATSDR toxicological profile for DIMP (ATSDR, 1998), we concur with the use of the USEPA oral reference doses (RfDs) for DIMP and IMPA for purposes of risk characterization of DMPT and DEPT, respectively. However, we do not concur with the application of a modifying factor to the surrogate RfDs for the following reasons:

- It is generally recognized that using a toxicological surrogate approach for health risk assessment contributes to uncertainty in the risk characterization, even when specific toxicological mechanisms and/or structure-activity-relationships are understood.

- Although DMPT and DEPT are structurally similar to the proposed surrogates, the mechanism of action for DMPT and DEPT toxicity is unknown.

- USEPA’s confidence in the RfDs for both DIMP and IMPA is rated “low” (USEPA, 2006) due to limitations in the primary study and toxicity database for both of these chemicals.

IV. Summary and Conclusions

Based on the structures that we confirmed for DIMP and IMPA, we concur with the identification of these chemicals as the toxicological surrogate chemicals for DMPT and DEPT, respectively. We also concur with the applicability of the RfDs for these surrogates for purposes of assessing potential upper bound health risks associated with DMPT and DEPT in environmental media at the BMI Complex and surrounding areas. However, due to the uncertainties in comparative toxicity of DMPT and DEPT and the identified surrogates, we do not concur that the use of a “modifying factor” (which would increase the acceptable daily dose by an order of magnitude) is justified or defensible. Accordingly, for purposes of health risk assessments of DMPT and DEPT prepared for the NDEP, the RfDs for the toxicological surrogates should be applied without modification. If this methodology results in unacceptable risks for DMPT and/or DEPT, alternative risk characterization methodology and/or risk management goals should be considered.

V. References Cited

Attachment B
• Monograph number: 04924
• Title: IMPA
• CAS Registry Number: 1832-54-8
• CAS Name: Methylphosphonic acid mono(1-methylethyl) ester
• Additional Names: iPMPA; O-isopropyl methyl phosphonic acid; neutralized sarin
• Molecular Formula: C₄H₁₁O₃P
• Molecular Weight: 138.10
• Percent Composition: C 34.79%, H 8.03%, O 34.76%, P 22.43%
• Properties: bp0.02 88°. nD25 1.4210.
• Use: Marker for the detection of sarin.
• Copyright © 2006 by Merck & Co., Inc., Whitehouse Station, New Jersey, USA. All Rights Reserved.